login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060637 Triangle T(n,k) (0 <= k <= n) giving number of tilings of the unary zonotope Z(n,k) (the projection onto R^k of a unit cube in R^n) by projections of the k-dimensional faces of the hypercube (again projected onto R^k). 9
1, 2, 1, 4, 2, 1, 8, 6, 2, 1, 16, 24, 8, 2, 1, 32, 120, 62, 10, 2, 1, 64, 720, 908, 148, 12, 2, 1, 128, 5040, 24698, 7686, 338, 14, 2, 1, 256, 40320, 1232944 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999

N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.

Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

LINKS

Table of n, a(n) for n=0..38.

M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices

EXAMPLE

:   1;

:   2,    1;

:   4,    2,     1;

:   8,    6,     2,    1;

:  16,   24,     8,    2,   1;

:  32,  120,    62,   10,   2,  1;

:  64,  720,   908,  148,  12,  2, 1;

: 128, 5040, 24698, 7686, 338, 14, 2, 1;

CROSSREFS

Diagonals give A000079, A000142, A006245, A060595-A060602. Cf. A060638.

Sequence in context: A109433 A123490 A157028 * A123486 A158264 A274106

Adjacent sequences:  A060634 A060635 A060636 * A060638 A060639 A060640

KEYWORD

nonn,tabl,hard,nice

AUTHOR

N. J. A. Sloane, Apr 16 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 26 04:11 EDT 2019. Contains 322469 sequences. (Running on oeis4.)