login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158122 G.f. A(x) satisfies: A(x)^2 = 1/AGM(1, 1 - 8*x/A(x)^2 ). 5
1, 2, 0, 0, 2, -4, 0, 0, -16, 40, 0, 0, 200, -544, 0, 0, -3006, 8540, 0, 0, 49956, -145720, 0, 0, -884352, 2625648, 0, 0, 16349648, -49161024, 0, 0, -311986480, 947069352, 0, 0, 6098614912, -18650752400, 0, 0, -121497078016, 373773754912, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See A060691 for the expansion of AGM(1,1-8x), where AGM denotes the arithmetic-geometric mean.

LINKS

Table of n, a(n) for n=0..43.

FORMULA

G.f.: A(x) = sqrt( x/Series_Reversion( x/AGM(1,1-8*x) ) ).

Self-convolution equals A158100.

Contribution from Paul D. Hanna, Mar 14 2009: (Start)

Quadrasections are A158212(n) = A158122(4n) and A158213 = A158122(4n+1);

let B(x), C(x), be the g.f.s of A158212 and A158213, respectively,

then C(x) = 2/B(x) so that

A(x) = B(x^4) + x*C(x^4) = B(x^4) + 2*x/B(x^4) = 2/C(x^4) + x*C(x^4). (End)

EXAMPLE

G.f.: A(x) = 1 + 2*x + 2*x^4 - 4*x^5 - 16*x^8 + 40*x^9 + 200*x^12 -+...

A(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 - 16*x^6 - 28*x^8 + 176*x^10 +...

Contribution from Paul D. Hanna, Mar 14 2009: (Start)

G.f. of quadrasection A158212 is:

B(x) = 1 + 2*x - 16*x^2 + 200*x^3 - 3006*x^4 + 49956*x^5 +...;

G.f. of quadrasection A158213 is C(x) = 2/B(x):

C(x) = 2 - 4*x + 40*x^2 - 544*x^3 + 8540*x^4 - 145720*x^5 +...

where g.f. A(x) = B(x^4) + x*C(x^4) = B(x^4) + 2*x/B(x^4). (End)

PROG

(PARI) {a(n)=polcoeff(sqrt(x/serreverse(x/agm(1, 1-8*x +x*O(x^n)))), n)}

CROSSREFS

Cf. A060691, A158100 (self-convolution), A258053.

Cf. quadrasections: A158212, A158213.

Sequence in context: A020474 A135589 A244312 * A028641 A141416 A176787

Adjacent sequences:  A158119 A158120 A158121 * A158123 A158124 A158125

KEYWORD

sign

AUTHOR

Paul D. Hanna, Mar 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 20:23 EST 2017. Contains 295141 sequences.