login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158100 G.f. satisfies: A(x) = 1/AGM(1, 1 - 8*x/A(x) ). 6
1, 4, 4, 0, 4, 0, -16, 0, -28, 0, 176, 0, 336, 0, -2496, 0, -4956, 0, 40112, 0, 81488, 0, -694720, 0, -1432688, 0, 12647488, 0, 26360896, 0, -238598400, 0, -501256668, 0, 4623092400, 0, 9772018896, 0, -91458048960, 0, -194263943664, 0, 1839634167360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See A060691 for the expansion of AGM(1,1-8x), where AGM denotes the arithmetic-geometric mean.

LINKS

Table of n, a(n) for n=0..42.

FORMULA

G.f.: A(x) = x/Series_Reversion( x/AGM(1, 1-8*x) ).

Convolution square-root is A158122, which has two nonzero quadrisections, A158212 and A158213, that are inverse convolutions of each other (by a factor of 2). - Paul D. Hanna, Mar 14 2009

EXAMPLE

G.f.: A(x) = 1 + 4*x + 4*x^2 + 4*x^4 - 16*x^6 - 28*x^8 +-...

1 - 8*x/A(x) = 1 - 8*x + 32*x^2 - 96*x^3 + 256*x^4 - 608*x^5 +-...

From Paul D. Hanna, Mar 14 2009: (Start)

Convolution square root is A158122 and begins:

[1,2,0,0,2,-4,0,0,-16,40,0,0,200,-544,0,0,-3006,8540,0,0,...]

in which the convolution of the quadrisections equals 2:

[1,2,-16,200,-3006,...]*[2,-4,40,-544,8540,...] = 2. (End)

PROG

(PARI) {a(n)=polcoeff(x/serreverse(x/agm(1, 1-8*x +x*O(x^n))), n)}

CROSSREFS

Cf. A060691, A158101 (bisection), A258053.

Cf. A158122 (sqrt), A158212, A158213.

Sequence in context: A187149 A106508 A177036 * A104287 A174611 A283361

Adjacent sequences:  A158097 A158098 A158099 * A158101 A158102 A158103

KEYWORD

sign

AUTHOR

Paul D. Hanna, Mar 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 01:26 EDT 2017. Contains 287073 sequences.