login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157948
a(n) = 64*n^2 - n.
2
63, 254, 573, 1020, 1595, 2298, 3129, 4088, 5175, 6390, 7733, 9204, 10803, 12530, 14385, 16368, 18479, 20718, 23085, 25580, 28203, 30954, 33833, 36840, 39975, 43238, 46629, 50148, 53795, 57570, 61473, 65504, 69663, 73950, 78365, 82908
OFFSET
1,1
COMMENTS
The identity (128*n - 1)^2 - (64*n^2 - n)*16^2 = 1 can be written as A157949(n)^2 - a(n)*16^2 = 1. - Vincenzo Librandi, Jan 29 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10:Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(8^2*t-1)).
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012
G.f.: x*(-63-65*x)/(x-1)^3. - Vincenzo Librandi, Jan 29 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {63, 254, 573}, 50] (* Vincenzo Librandi, Jan 29 2012 *)
Table[64n^2-n, {n, 40}] (* Harvey P. Dale, May 30 2017 *)
PROG
(Magma) I:=[63, 254, 573]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
(PARI) for(n=1, 40, print1(64*n^2 - n", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
Cf. A157949.
Sequence in context: A184457 A184449 A158676 * A326388 A158684 A063398
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 10 2009
STATUS
approved