OFFSET
1,1
COMMENTS
The identity (128*n - 1)^2 - (64*n^2 - n)*16^2 = 1 can be written as A157949(n)^2 - a(n)*16^2 = 1. - Vincenzo Librandi, Jan 29 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10:Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(8^2*t-1)).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012
G.f.: x*(-63-65*x)/(x-1)^3. - Vincenzo Librandi, Jan 29 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {63, 254, 573}, 50] (* Vincenzo Librandi, Jan 29 2012 *)
Table[64n^2-n, {n, 40}] (* Harvey P. Dale, May 30 2017 *)
PROG
(Magma) I:=[63, 254, 573]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
(PARI) for(n=1, 40, print1(64*n^2 - n", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 10 2009
STATUS
approved