login
A184457
T(n,k)=1/36 the number of (n+2)X(k+2) 0..2 arrays with each 3X3 subblock containing two of one value, two of another, and five of the last
10
63, 234, 234, 864, 600, 864, 3159, 1591, 1591, 3159, 12879, 4517, 3125, 4517, 12879, 51759, 16029, 6880, 6880, 16029, 51759, 203391, 58413, 20706, 11766, 20706, 58413, 203391, 898857, 216477, 67180, 28668, 28668, 67180, 216477, 898857, 3877551
OFFSET
1,1
COMMENTS
Table starts
.......63......234......864.....3159...12879...51759.203391..898857.3877551
......234......600.....1591.....4517...16029...58413.216477..930657.3947025
......864.....1591.....3125.....6880...20706...67180.232326..967138.4023354
.....3159.....4517.....6880....11766...28668...80058.253176.1011114.4109928
....12879....16029....20706....28668...53350..116832.309042.1119528.4313386
....51759....58413....67180....80058..116832..196974.413100.1288638
...203391...216477...232326...253176..309042..413100.660654
...898857...930657...967138..1011114.1119528.1288638
..3877551..3947025..4023354..4109928.4313386
.16120377.16260821.16410550.16573530
LINKS
FORMULA
Empirical for columns 2 to at least 4: a(n)=6*a(n-1)-11*a(n-2)+195*a(n-3)-1134*a(n-4)+2079*a(n-5)-11600*a(n-6)+62796*a(n-7)-115126*a(n-8)+263520*a(n-9)-1204344*a(n-10)+2207964*a(n-11)-2907648*a(n-12)+10219824*a(n-13)-18736344*a(n-14)+17243280*a(n-15)-42140736*a(n-16)+77258016*a(n-17)-55857600*a(n-18)+82301184*a(n-19)-150885504*a(n-20)+92378880*a(n-21)-60466176*a(n-22)+110854656*a(n-23)-60466176*a(n-24)
EXAMPLE
Some solutions with a(1,1)=0 for 5X4
..0..2..1..0....0..1..2..0....0..1..0..2....0..2..0..0....0..1..2..0
..2..2..0..2....0..0..1..2....0..1..2..0....1..0..2..1....2..0..1..2
..2..1..2..2....2..0..0..0....2..0..0..0....0..0..1..0....2..2..2..2
..1..0..2..1....1..2..0..1....0..0..1..2....0..2..0..0....1..2..0..1
..2..2..0..2....0..1..0..2....1..0..2..1....2..1..0..2....1..2..0..1
CROSSREFS
Sequence in context: A038644 A083079 A230651 * A184449 A158676 A157948
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 14 2011
STATUS
approved