login
A157619
31250n - 22150.
3
9100, 40350, 71600, 102850, 134100, 165350, 196600, 227850, 259100, 290350, 321600, 352850, 384100, 415350, 446600, 477850, 509100, 540350, 571600, 602850, 634100, 665350, 696600, 727850, 759100, 790350, 821600, 852850, 884100, 915350
OFFSET
1,1
COMMENTS
The identity (781250*n^2-1107500*n+392499)^2-(625*n^2-886*n+314)*(31250*n-22150)^2=1 can be written as A157620(n)^2-A157618(n)*a(n)^2=1.
FORMULA
a(n) = 2*a(n-1) - a(n-2).
G.f.: x*(9100+22150*x)/(x-1)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {9100, 40350}, 30]
PROG
(Magma) I:=[9100, 40350]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]];
(PARI) a(n) = 31250*n - 22150.
CROSSREFS
Sequence in context: A234532 A097209 A015298 * A233713 A174983 A184381
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 03 2009
STATUS
approved