This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A234532 Pentagonal numbers penta(n) = (p + q + r) /3 which are the arithmetic mean of three consecutive primes such that p < penta(n) < q < r. 1
 9087, 29751, 291501, 602617, 1505505, 1778337, 1941997, 2137857, 3032415, 4629695, 5016947, 5038917, 7837551, 8030737, 9328807, 11935651, 19158427, 35616757, 40964001, 41073817, 42594697, 44289817, 56141827, 59267551 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The n-th pentagonal number is (3*n^2 - n)/2 = n*(3*n - 1)/2. LINKS K. D. Bajpai, Table of n, a(n) for n = 1..3747 EXAMPLE 9087 is in the sequence because 9087 = 78 *(3*78 - 1)/2 = (9067 + 9091 + 9103)/3, that is arithmetic mean of three consecutive primes. 29751 is in the sequence because 29751 = 141*(3*141 - 1)/2 = (29741 + 29753 + 29759)/3, that is arithmetic mean of three consecutive primes. MAPLE KD := proc() local a, b, d, e, g; a:= n*(3*n-1)/2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); g:=(b+d+e)/3;  if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000); CROSSREFS Cf. A000326 (pentagonal numbers:  n * (3*n - 1)/2). Cf. A069495 (squares: arithmetic mean of two consecutive primes). Cf. A234240 (cubes: arithmetic mean of three consecutive primes). Sequence in context: A118700 A234339 A247991 * A097209 A015298 A157619 Adjacent sequences:  A234529 A234530 A234531 * A234533 A234534 A234535 KEYWORD nonn AUTHOR K. D. Bajpai, Dec 27 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 18:47 EDT 2019. Contains 325109 sequences. (Running on oeis4.)