

A234532


Pentagonal numbers penta(n) = (p + q + r) /3 which are the arithmetic mean of three consecutive primes such that p < penta(n) < q < r.


1



9087, 29751, 291501, 602617, 1505505, 1778337, 1941997, 2137857, 3032415, 4629695, 5016947, 5038917, 7837551, 8030737, 9328807, 11935651, 19158427, 35616757, 40964001, 41073817, 42594697, 44289817, 56141827, 59267551
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The nth pentagonal number is (3*n^2  n)/2 = n*(3*n  1)/2.


LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..3747


EXAMPLE

9087 is in the sequence because 9087 = 78 *(3*78  1)/2 = (9067 + 9091 + 9103)/3, that is arithmetic mean of three consecutive primes.
29751 is in the sequence because 29751 = 141*(3*141  1)/2 = (29741 + 29753 + 29759)/3, that is arithmetic mean of three consecutive primes.


MAPLE

KD := proc() local a, b, d, e, g; a:= n*(3*n1)/2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); g:=(b+d+e)/3; if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000);


CROSSREFS

Cf. A000326 (pentagonal numbers: n * (3*n  1)/2).
Cf. A069495 (squares: arithmetic mean of two consecutive primes).
Cf. A234240 (cubes: arithmetic mean of three consecutive primes).
Sequence in context: A118700 A234339 A247991 * A097209 A015298 A157619
Adjacent sequences: A234529 A234530 A234531 * A234533 A234534 A234535


KEYWORD

nonn


AUTHOR

K. D. Bajpai, Dec 27 2013


STATUS

approved



