login
A157404
A partition product of Stirling_2 type [parameter k = 4] with biggest-part statistic (triangle read by rows).
10
1, 1, 4, 1, 12, 36, 1, 72, 144, 504, 1, 280, 1800, 2520, 9576, 1, 1740, 22320, 37800, 57456, 229824, 1, 8484, 182700, 864360, 1005480, 1608768, 6664896, 1, 57232, 2380896, 16546320, 26276544, 32175360, 53319168, 226606464
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 4,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144267.
Same partition product with length statistic is A011801.
Diagonal a(A000217) = A008546.
Row sum is A028575.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(5*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009
STATUS
approved