login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157402 A partition product of Stirling_2 type [parameter k = 2] with biggest-part statistic (triangle read by rows). 10
1, 1, 2, 1, 6, 10, 1, 24, 40, 80, 1, 80, 300, 400, 880, 1, 330, 2400, 3600, 5280, 12320, 1, 1302, 15750, 47600, 55440, 86240, 209440, 1, 5936, 129360, 588000, 837760, 1034880, 1675520, 4188800, 1, 26784, 1146040, 5856480 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 2,

summed over parts with equal biggest part (see the Luschny link).

Underlying partition triangle is A143172.

Same partition product with length statistic is A004747.

Diagonal a(A000217) = A008544.

Row sum is A015735.

LINKS

Table of n, a(n) for n=1..40.

Peter Luschny, Counting with Partitions.

Peter Luschny, Generalized Stirling_2 Triangles.

FORMULA

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n

T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that

1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),

f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(3*j - 1).

CROSSREFS

Cf. A157396, A157397, A157398, A157399, A157400, A080510, A157401, A157403, A157404, A157405

Sequence in context: A025252 A177863 A193601 * A069114 A173773 A121927

Adjacent sequences:  A157399 A157400 A157401 * A157403 A157404 A157405

KEYWORD

easy,nonn,tabl

AUTHOR

Peter Luschny, Mar 09 2009, Mar 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 00:25 EDT 2017. Contains 292326 sequences.