login
A157345
Semiprimes that are the product of two distinct non-Sophie Germain primes.
9
91, 119, 133, 217, 221, 247, 259, 301, 323, 329, 403, 413, 427, 469, 481, 497, 511, 527, 553, 559, 589, 611, 629, 679, 703, 707, 721, 731, 749, 763, 767, 793, 799, 817, 871, 889, 893, 923, 949, 959, 973, 1003, 1027, 1037, 1043, 1057, 1099, 1121, 1139, 1141
OFFSET
1,1
COMMENTS
91 = 7*13; 7 and 13 are not Sophie Germain primes, ...
LINKS
MATHEMATICA
lst={}; Do[If[Plus@@Last/@FactorInteger[n]==2, a=Length[First/@FactorInteger[n]]; If[a==2, b=First/@FactorInteger[n]; c=b[[1]]; d=b[[2]]; If[ !PrimeQ[2*c+1]&&!PrimeQ[2*d+1], AppendTo[lst, n]]]], {n, 7!}]; lst
With[{nn=50}, Take[Union[Times@@@Subsets[Select[Prime[Range[nn]], !PrimeQ[ 2#+1]&], {2}]], nn]] (* Harvey P. Dale, May 04 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved