login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157346
Products of 3 distinct Sophie Germain primes.
8
30, 66, 110, 138, 165, 174, 230, 246, 290, 318, 345, 410, 435, 498, 506, 530, 534, 615, 638, 678, 759, 786, 795, 830, 890, 902, 957, 1038, 1074, 1130, 1146, 1166, 1245, 1265, 1310, 1334, 1335, 1353, 1398, 1434, 1506, 1595, 1686, 1695, 1730, 1749, 1758, 1790
OFFSET
1,1
LINKS
EXAMPLE
30 = 2*3*5; 2,3 and 5 are distinct Sophie Germain primes.
66 = 2*3*11; 2,3 and 11 are distinct Sophie Germain primes.
MATHEMATICA
lst={}; Do[If[Plus@@Last/@FactorInteger[n]==3, a=Length[First/@FactorInteger[n]]; If[a==3, b=First/@FactorInteger[n]; c=b[[1]]; d=b[[2]]; e=b[[3]]; If[PrimeQ[2*c+1]&&PrimeQ[2*d+1]&&PrimeQ[2*e+1], AppendTo[lst, n]]]], {n, 7!}]; lst
With[{sgps=Select[Prime[Range[100]], PrimeQ[2#+1]&]}, Take[Union[ Times@@@ Subsets[sgps, {3}]], 60]] (* Harvey P. Dale, Aug 10 2011 *)
KEYWORD
nonn
AUTHOR
STATUS
approved