The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157011 Triangle T(n,k) read by rows: T(n,k)= (k-1)*T(n-1,k) + (n-k+2)*T(n-1, k-1), with T(n,1)=1, for 1 <= k <= n, n >= 1. 5
 1, 1, 2, 1, 5, 4, 1, 9, 23, 8, 1, 14, 82, 93, 16, 1, 20, 234, 607, 343, 32, 1, 27, 588, 2991, 3800, 1189, 64, 1, 35, 1365, 12501, 30155, 21145, 3951, 128, 1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256, 1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums are apparently in A002627. The Mathematica code gives ten sequences of which the first few are in the OEIS (see Crossrefs section). - G. C. Greubel, Feb 22 2019 LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened EXAMPLE The triangle starts in row n=1 as: 1; 1, 2; 1, 5, 4; 1, 9, 23, 8; 1, 14, 82, 93, 16; 1, 20, 234, 607, 343, 32; 1, 27, 588, 2991, 3800, 1189, 64; 1, 35, 1365, 12501, 30155, 21145, 3951, 128; 1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256; 1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512; MAPLE A157011 := proc(n, k) if k <0 or k >= n then 0; elif k =0 then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc: # R. J. Mathar, Jun 18 2011 MATHEMATICA e[n_, 0, m_]:= 1; e[n_, k_, m_]:= 0 /; k >= n; e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m]; Table[Flatten[Table[Table[e[n, k, m], {k, 0, n-1}], {n, 1, 10}]], {m, 0, 10}] T[n_, 1]:= 1; T[n_, n_]:= 2^(n-1); T[n_, k_]:= T[n, k] = (k-1)*T[n-1, k] + (n-k+2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *) PROG (PARI) {T(n, k) = if(k==1, 1, if(k==n, 2^(n-1), (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)))}; for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019 (Sage) def T(n, k): if (k==1): return 1 elif (k==n): return 2^(n-1) else: return (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1) [[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019 CROSSREFS Cf. A000096 (column k=1), A002627, A008517. Cf. This sequence (m=0), A008292 (m=1), A157012 (m=2), A157013 (m=3). Sequence in context: A128718 A112358 A126351 * A246173 A092821 A238241 Adjacent sequences: A157008 A157009 A157010 * A157012 A157013 A157014 KEYWORD nonn,tabl,easy AUTHOR Roger L. Bagula, Feb 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:00 EST 2022. Contains 358644 sequences. (Running on oeis4.)