login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156887 a(n) = Sum_{k=0..n} C(n,k)*C(4*n+k,k). 3
1, 6, 64, 768, 9708, 126386, 1676956, 22548168, 306167324, 4188703512, 57649462164, 797294161824, 11071026740964, 154250752864812, 2155368246401224, 30192512693210888, 423859798484668188, 5961793387214958792, 83998039356129372448, 1185277027372535468544 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)=[x^n] (1+6x+14x^2+16x^3+9x^4+2x^5)^n. The coefficients (1,6,14,16,9,2) are the 6th row of A029635.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..862

P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.

FORMULA

Conjecture: 576*n*(32901928701*n-65877527665)*(4*n-3)*(2*n-1)*(4*n-1)*a(n) +(-8795436181229177*n^5 +35251410418024655*n^4 -47934714902592853*n^3 +29414167990853161*n^2 -9060238526902314*n +1466702211905280)*a(n-1) +8*(10299715469615*n^5 -136961193094719*n^4 +872530072905392*n^3 -2699499511785411*n^2 +3902106377543903*n -2123717948975100)*a(n-2) -64*(2*n-5)*(4*n-9)*(n-2)*(27741827*n-2925269736)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Feb 25 2015

From Peter Bala, Feb 11 2018: (Start)

a(n) = Sum_{k = 0..n} (-1)^(n-k)*C(n,k)*C(4*n+k,n)*2^k.

a(n) = Sum_{k = 0..n} C(n,k)*C(4*n,k)*2^(n-k).

8*(4*n)*(4*n-1)*(4*n-2)**(4*n-3)*(4633*n^3-19662*n^2+27593*n-12804)*a(n) = (137604733*n^7-859190528*n^6+2179882848*n^5-2890753162*n^4+2144669963*n^3-880916550*n^2+182941416*n-14515200)*a(n-1) - (4*n-4)*(4*n-5)*(4*n-6)*(4*n-7)*(4633*n^3-5763*n^2+2168*n-240)*a(n-2). A proof of Mathar's conjectured third-order recurrence above follows easily using this second-order recurrence.  (End)

MAPLE

A156887 := proc(n)

    add(binomial(n, k)*binomial(4*n+k, k), k=0..n) ;

end proc: # R. J. Mathar, Feb 25 2015

MATHEMATICA

Table[Sum[Binomial[n, k]Binomial[4n+k, k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Jul 24 2018 *)

PROG

(PARI) {a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+k, k))} \\ Seiichi Manyama, Feb 02 2019

CROSSREFS

Cf. A001850, A114496, A156886.

Sequence in context: A186668 A025609 A309186 * A239847 A264634 A296165

Adjacent sequences:  A156884 A156885 A156886 * A156888 A156889 A156890

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Feb 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 19:26 EST 2020. Contains 338769 sequences. (Running on oeis4.)