login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156886
a(n) = Sum_{k=0..n} C(n,k)*C(3*n+k,k)
5
1, 5, 43, 416, 4239, 44485, 475780, 5156548, 56437231, 622361423, 6904185523, 76964141600, 861408728964, 9673849095708, 108954068684616, 1230185577016156, 13920106205444335, 157814104889538739
OFFSET
0,2
COMMENTS
a(n)=[x^n](1+5x+9x^2+7x^3+2x^4)^n. The coefficients (1,5,9,7,2) are the 5th row of A029635.
LINKS
P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
FORMULA
From Peter Bala, Feb 11 2018: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*C(n,k)*C(3*n+k,n)*2^k.
a(n) = Sum_{k = 0..n} C(n,k)*C(3*n,k)*2^(n-k),
12*n*(3*n-1)*(3*n-2)*(238*n^2 - 663*n + 457)*a(n) = 2*(150416*n^5 - 644640*n^4 + 1020351*n^3 - 734334*n^2 + 237007*n - 26880)*a(n-1) - (3*n-3)*(3*n-4)*(3*n-5)*(238*n^2 - 187*n + 32)*a(n-2). (End)
a(n) = P_n(0,2*n,3) where P_n(a,b,x) is the n-th Jacobi polynomial with parameters a and b. - Robert Israel, Feb 11 2018
a(n) ~ sqrt(1/3 + 11/(12*sqrt(7))) * ((316 + 119*sqrt(7))/54)^n / sqrt(Pi*n). - Vaclav Kotesovec, Jan 09 2023
MAPLE
A156886 := proc(n)
add(binomial(n, k)*binomial(3*n+k, k), k = 0..n);
end proc:
seq(A156886(n), n = 0..20); # Peter Bala, Feb 11 2018
MATHEMATICA
a[n_] := Sum[ Binomial[n, k] Binomial[3n + k, k], {k, 0, n}]; Array[a, 21, 0] (* Robert G. Wilson v, Feb 11 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 17 2009
STATUS
approved