The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156886 a(n) = Sum_{k=0..n} C(n,k)*C(3*n+k,k) 4
 1, 5, 43, 416, 4239, 44485, 475780, 5156548, 56437231, 622361423, 6904185523, 76964141600, 861408728964, 9673849095708, 108954068684616, 1230185577016156, 13920106205444335, 157814104889538739 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)=[x^n](1+5x+9x^2+7x^3+2x^4)^n. The coefficients (1,5,9,7,2) are the 5th row of A029635. LINKS Robert Israel, Table of n, a(n) for n = 0..937 P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4. FORMULA From Peter Bala, Feb 11 2018: (Start) a(n) = Sum_{k = 0..n} (-1)^(n-k)*C(n,k)*C(3*n+k,n)*2^k. a(n) = Sum_{k = 0..n} C(n,k)*C(3*n,k)*2^(n-k), 12*n*(3*n-1)*(3*n-2)*(238*n^2 - 663*n + 457)*a(n) = 2*(150416*n^5 - 644640*n^4 + 1020351*n^3 - 734334*n^2 + 237007*n - 26880)*a(n-1) - (3*n-3)*(3*n-4)*(3*n-5)*(238*n^2 - 187*n + 32)*a(n-2). (End) a(n) = P_n(0,2*n,3) where P_n(a,b,x) is the n-th Jacobi polynomial with parameters a and b. - Robert Israel, Feb 11 2018 MAPLE A156886 := proc(n)     add(binomial(n, k)*binomial(3*n+k, k), k = 0..n); end proc: seq(A156886(n), n = 0..20); # Peter Bala, Feb 11 2018 MATHEMATICA a[n_] := Sum[ Binomial[n, k] Binomial[3n + k, k], {k, 0, n}]; Array[a, 21, 0] (* Robert G. Wilson v, Feb 11 2018 *) CROSSREFS Cf. A001850, A114496, A029635, A156887. Sequence in context: A241707 A322246 A306080 * A112115 A239265 A274666 Adjacent sequences:  A156883 A156884 A156885 * A156887 A156888 A156889 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 19:26 EST 2020. Contains 338769 sequences. (Running on oeis4.)