This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156740 A higher order odd Narayana-Riordan triangle sequence:i=7; q-factorial odd product: f(n)=Product[2*k - 1, {k, 0, n}]; Narayana combinations: a(n,m)-=Binomial[n, m]*f[n]/(f[m]*f[n - m]); General product form: t[n,m,i] = Product[a(n + k, m + k)/a(n - m + k, k), {k, 0, i}] 1
 1, 1, 1, 1, 153, 1, 1, 4845, 4845, 1, 1, 74613, 2362745, 74613, 1, 1, 735471, 358664691, 358664691, 735471, 1, 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1, 1, 30421755, 1056158828725, 160324910200455, 160324910200455 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 155, 9692, 2511973, 718800326, 444293699995, 322762198901872, 375936459278442977, 517934214393739253282, 977731835276897269439162,...}. LINKS FORMULA i=7; q-factorial odd product: f(n)=Product[2*k - 1, {k, 0, n}]; Narayana combinations: a(n,m)-=Binomial[n, m]*f[n]/(f[m]*f[n - m]); General product form: t[n,m,i] = Product[a(n + k, m + k)/a(n - m + k, k), {k, 0, i}] EXAMPLE {1}, {1, 1}, {1, 153, 1}, {1, 4845, 4845, 1}, {1, 74613, 2362745, 74613, 1}, {1, 735471, 358664691, 358664691, 735471, 1}, {1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1}, {1, 30421755, 1056158828725, 160324910200455, 160324910200455, 1056158828725, 30421755, 1}, {1, 145422675, 28915117583625, 31700607244180875, 312477414264068625, 31700607244180875, 28915117583625, 145422675, 1}, {1, 601080390, 571311883685250, 3587267317659684750, 255379268566725176250, 255379268566725176250, 3587267317659684750, 571311883685250, 601080390, 1}, {1, 2203961430, 8658548992740900, 259886348017118113500, 105962751896070430822500, 765286541471619778162500, 105962751896070430822500, 259886348017118113500, 8658548992740900, 2203961430, 1} MATHEMATICA Clear[t, n, m, i, A, f]; f[n_] = Product[2*k - 1, {k, 0, n}]; A[n_, m_] = Binomial[n, m]*f[n]/(f[m]*f[n - m]); t[n_, m_, i_] = Product[A[n + k, m + k]/A[n - m + k, k], {k, 0, i}]; Table[Flatten[Table[Table[t[n, m, i], {m, 0, n}], {n, 0, 10}]], {i, 6, 9}] CROSSREFS Cf. A086645. Row sums are in A151614. Sequence in context: A157881 A099117 A109778 * A095226 A165340 A183985 Adjacent sequences:  A156737 A156738 A156739 * A156741 A156742 A156743 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Feb 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.