login
A156740
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 7, read by rows.
5
1, 1, 1, 1, 153, 1, 1, 4845, 4845, 1, 1, 74613, 2362745, 74613, 1, 1, 735471, 358664691, 358664691, 735471, 1, 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1, 1, 30421755, 1056158828725, 160324910200455, 160324910200455, 1056158828725, 30421755, 1
OFFSET
0,5
FORMULA
T(n, k, m) = round( Product_{j=0..m} b(n+j, k+j)/b(n-k+j, j) ), where b(n, k) = binomial(2*n, 2*k) and m = 7.
Sum_{k=0..n} T(n, k, 7) = A151614(n).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 153, 1;
1, 4845, 4845, 1;
1, 74613, 2362745, 74613, 1;
1, 735471, 358664691, 358664691, 735471, 1;
1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1;
MATHEMATICA
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j, 0, m}]];
Table[T[n, k, 7], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
PROG
(Magma)
A156740:= func< n, k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..7]]) ) >;
[A156740(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
(Sage)
def A156740(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..7)) )
flatten([[A156740(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
CROSSREFS
Cf. A086645 (m=0), A156739 (m=6), this sequence (m=7), A156741 (m=8), A156742 (m=9).
Cf. A151614 (row sums).
Sequence in context: A370312 A099117 A109778 * A095226 A346630 A165340
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Definition corrected to give integral terms and edited by G. C. Greubel, Jun 19 2021
STATUS
approved