login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156653 Coefficients of a higher level infinite sum polynomial: p(x,n)=(1 - x)^(2n + 1)/((n + 1)*x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^ k, {k, 0, Infinity}]. 0
1, 1, 3, 1, 16, 13, 1, 125, 171, 39, 1, 1296, 2551, 1091, 101, 1, 16807, 43653, 28838, 5498, 243, 1, 262144, 850809, 780585, 243790, 24270, 561, 1, 4782969, 18689527, 22278189, 10073955, 1733035, 98661, 1263, 1, 100000000, 457947691, 677785807 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Roe sums are:A001761;

{1, 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, 1764322560, 60949324800,...}.

LINKS

Table of n, a(n) for n=0..39.

FORMULA

p(x,n)=(1 - x)^(2n + 1)/((n + 1)*x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^ k, {k, 0, Infinity}];

t(n,m)=coefficients(p(x,n)).

EXAMPLE

{1},

{1},

{3, 1},

{16, 13, 1},

{125, 171, 39, 1},

{1296, 2551, 1091, 101, 1},

{16807, 43653, 28838, 5498, 243, 1},

{262144, 850809, 780585, 243790, 24270, 561, 1},

{4782969, 18689527, 22278189, 10073955, 1733035, 98661, 1263, 1},

{100000000, 457947691, 677785807, 410994583, 106215619, 10996369, 379693, 2797, 1},

{2357947691, 12400462713, 22055317500, 17027114412, 6066172434, 976428894, 64468572, 1406460, 6123, 1}

MATHEMATICA

Clear[p, x, n, m];

p[x_, n_] = (1 - x)^( 2n + 1)/((n + 1)*x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];

Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];

Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A222029 A038675 A264902 * A048159 A276640 A123527

Adjacent sequences:  A156650 A156651 A156652 * A156654 A156655 A156656

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula, Feb 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 14:52 EST 2016. Contains 278877 sequences.