This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156282 A triangle sequence of cyclotomic product polynomials: p(x,n)=Product[Cyclotomic[k + 1, x], {k, 1, n}]. 0
 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 3, 6, 9, 11, 11, 9, 6, 3, 1, 1, 2, 4, 6, 8, 9, 9, 8, 6, 4, 2, 1, 1, 3, 7, 13, 21, 30, 39, 46, 50, 50, 46, 39, 30, 21, 13, 7, 3, 1, 1, 3, 7, 13, 22, 33, 46, 59, 71, 80, 85, 85, 80, 71, 59, 46, 33, 22, 13, 7, 3, 1, 1, 3, 7, 14, 25, 40, 60, 84, 111, 139 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The row sums are:{1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720,...}. This idea for these products come from the q-Eulerian exponential generalization: Here are the definitions of the q-exponentials in John Shareshian and Michelle Wachs paper: Clear[Q, e, p, n, x]; p[x_, n_] := Product[(1 - x^k)/(1 - x), {k, 1, n}]; e[x_, q_] = Sum[x^n/p[q, n], {n, 0, Infinity}]; f[x_, t_, q_] = (1 - t)/(e[x*(t - 1), q] - t); Where the expansion is: (called the Stanley q-analog of the Eulerian type); (1 - t)/(e[x*(t - 1), q] - t)= Sum[A[n,q,t]*x^n/p[q, n], {n, 0, Infinity}] ; The idea here is to substitute the new Cyclotomic product where it will work for the q-product. REFERENCES L. Carlitz,q-Bernoulli numbers and polynomials,Duke Math. J. Volume 15, Number 4 (1948), 987-1000.http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1077475200 L. Carlitz and J. Riordan,Two element lattice permutation numbers and their q-generalization, Duke Math. J. Volume 31, Number 3 (1964), 371-388, http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1077375351 John Shareshian, Michelle L. Wachs, q-Eulerian Polynomials : Excedance Number ans Major Index, arXiv: math/ 0608274v1,11 Aug 2006,page 3. LINKS FORMULA p(x,n)=Product[Cyclotomic[k + 1, x], {k, 1, n}]. EXAMPLE {1}, {1, 1}, {1, 2, 2, 1}, {1, 2, 3, 3, 2, 1}, {1, 3, 6, 9, 11, 11, 9, 6, 3, 1}, {1, 2, 4, 6, 8, 9, 9, 8, 6, 4, 2, 1}, {1, 3, 7, 13, 21, 30, 39, 46, 50, 50, 46, 39, 30, 21, 13, 7, 3, 1}, {1, 3, 7, 13, 22, 33, 46, 59, 71, 80, 85, 85, 80, 71, 59, 46, 33, 22, 13, 7, 3, 1}, {1, 3, 7, 14, 25, 40, 60, 84, 111, 139, 166, 189, 206, 215, 215, 206, 189, 166, 139, 111, 84, 60, 40, 25, 14, 7, 3, 1}, {1, 2, 5, 9, 16, 25, 38, 53, 72, 92, 114, 135, 155, 171, 183, 189, 189, 183, 171, 155, 135, 114, 92, 72, 53, 38, 25, 16, 9, 5, 2, 1}, {1, 3, 8, 17, 33, 58, 96, 149, 221, 313, 427, 561, 714, 880, 1054, 1227, 1391, 1536, 1654, 1737, 1780, 1780, 1737, 1654, 1536, 1391, 1227, 1054, 880, 714, 561, 427, 313, 221, 149, 96, 58, 33, 17, 8, 3, 1} MATHEMATICA Clear[p, n, x]; p[x_, n_] = Product[Cyclotomic[k + 1, x], {k, 1, n}]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A136605 A165621 A004739 * A203776 A120423 A113137 Adjacent sequences:  A156279 A156280 A156281 * A156283 A156284 A156285 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Feb 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .