login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156284
From every interval (2^(m-1), 2^m), m >= 3, we remove primes p for which 2^m-p is a prime that was not removed for smaller values of m; the sequence gives all remaining odd primes.
8
3, 7, 11, 17, 19, 23, 31, 37, 43, 59, 67, 71, 73, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 179, 181, 191, 193, 199, 211, 223, 227, 229, 241, 251, 257, 263, 269
OFFSET
1,1
COMMENTS
Powers of 2 are not expressible as sums of two primes from this sequence. This is attained by a more economical algorithm than that for construction of A152451. If A(x) is the counting function for the terms a(n) <= x, then A(x) = pi(x) - O(x/(log^2(x)). It is known that the approximation of pi(x) by x/log(x) gives the remainder term as, at best, O(x/log^2(x)). Therefore beginning our process from m >= M (with arbitrarily large M), we obtain a sequence which essentially is indistinguishable from the sequence of all odd primes with the help of the approximation of pi(x) by x/log(x). Hence it is in principle impossible to prove the binary Goldbach conjecture by such an approximation of pi(x).
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 07 2009
STATUS
approved