|
|
A155098
|
|
Numbers k such that k^2 == -1 (mod 41).
|
|
6
|
|
|
9, 32, 50, 73, 91, 114, 132, 155, 173, 196, 214, 237, 255, 278, 296, 319, 337, 360, 378, 401, 419, 442, 460, 483, 501, 524, 542, 565, 583, 606, 624, 647, 665, 688, 706, 729, 747, 770, 788, 811, 829, 852, 870, 893, 911, 934, 952, 975, 993, 1016, 1034, 1057
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that k == 9 or 32 (mod 41). - Charles R Greathouse IV, Dec 27 2011
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
|
|
FORMULA
|
a(n) = 9*(-1)^(n+1) + 41*floor(n/2). - M. F. Hasler, Jun 16 2010
a(2k+1) = 41*k + a(1), a(2k) = 41*k - a(1), with a(1) = A002314(6) since 41 = A002144(6). - M. F. Hasler, Jun 16 2010
a(n) = a(n-2) + 41 for all n > 2. - M. F. Hasler, Jun 16 2010
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1, -1}, {9, 32, 50}, 100] (* Vincenzo Librandi, Feb 29 2012 *)
Select[Range[1100], PowerMod[#, 2, 41] == 40 &] (* Vincenzo Librandi, Apr 24 2014 *)
|
|
PROG
|
(PARI) A155098(n)=n\2*41-9*(-1)^n /* M. F. Hasler, Jun 16 2010 */
|
|
CROSSREFS
|
Cf. A002144, A155086, A155095, A155096, A155097.
Sequence in context: A018833 A130510 A120498 * A063134 A027620 A152619
Adjacent sequences: A155095 A155096 A155097 * A155099 A155100 A155101
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Jan 20 2009
|
|
EXTENSIONS
|
Terms checked & minor edits by M. F. Hasler, Jun 16 2010
|
|
STATUS
|
approved
|
|
|
|