login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155095 Numbers n such that n^2 == -1 mod (17) 7
4, 13, 21, 30, 38, 47, 55, 64, 72, 81, 89, 98, 106, 115, 123, 132, 140, 149, 157, 166, 174, 183, 191, 200, 208, 217, 225, 234, 242, 251, 259, 268, 276, 285, 293, 302, 310, 319, 327, 336, 344, 353, 361, 370, 378, 387, 395, 404, 412, 421, 429, 438, 446, 455 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The first pair (a,b) is such that a+b=p, a*b=p*h+1, with h<=(p-1)/4; other pairs are given by(a+kp, b+kp), k=1,2,3...

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = 4*(-1)^(n+1) + 17*floor(n/2). - M. F. Hasler, Jun 16 2010

a(2k+1) = 17 k + a(1), a(2k) = 17 k - a(1), with a(1) = A002314(3) since 17 = A002144(3). - M. F. Hasler, Jun 16 2010

a(n) = a(n-2)+17 for all n>2. - M. F. Hasler, Jun 16 2010

From Bruno Berselli, Sep 26 2010: (Start)

G.f.: x*(4+9*x+4*x^2)/((1+x)*(1-x)^2).

a(n)-a(n-1)-a(n-2)+a(n-3) = 0 with n>3.

a(n) = (34*n+(-1)^n-17)/4. (End)

MATHEMATICA

Select[Range[500], PowerMod[#, 2, 17]==16&] (* or *) LinearRecurrence[ {1, 1, -1}, {4, 13, 21}, 60] (* Harvey P. Dale, Jun 25 2011 *)

PROG

(PARI) A155095(n)=n\2*17-4*(-1)^n /* _M.F.Hasler_, Jun 16 2010 */

CROSSREFS

Cf. A002144, A155086, A155096, A155097, A155098.

Sequence in context: A300309 A228138 A081024 * A063219 A063121 A199798

Adjacent sequences:  A155092 A155093 A155094 * A155096 A155097 A155098

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 20 2009

EXTENSIONS

Terms checked & minor edits by M. F. Hasler, Jun 16 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 19:05 EDT 2019. Contains 324198 sequences. (Running on oeis4.)