This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154983 Polynomial recursion:m=0; p(x,n)=(x + 1)*p(x, n - 1) + 2^(m + n - 1)*x*p(x, n - 2)+If[n >= 3, 2^(n - 2)*x*p(x, n - 2), 0]. 0
 1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 24, 70, 24, 1, 1, 49, 358, 358, 49, 1, 1, 98, 1559, 4076, 1559, 98, 1, 1, 195, 6361, 40003, 40003, 6361, 195, 1, 1, 388, 25372, 345692, 862598, 345692, 25372, 388, 1, 1, 773, 100640, 2813688, 16569442, 16569442, 2813688 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 6, 24, 120, 816, 7392, 93120, 1605504, 38969088, 1310965248,...}. LINKS FORMULA m=0; p(x,n)=(x + 1)*p(x, n - 1) + 2^(m + n - 1)*x*p(x, n - 2) +If[n >= 3, 2^(n - 2)*x*p(x, n - 2), 0]; t(n,m)=coefficients(p(x,n)) EXAMPLE {1}, {1, 1}, {1, 4, 1}, {1, 11, 11, 1}, {1, 24, 70, 24, 1}, {1, 49, 358, 358, 49, 1}, {1, 98, 1559, 4076, 1559, 98, 1}, {1, 195, 6361, 40003, 40003, 6361, 195, 1}, {1, 388, 25372, 345692, 862598, 345692, 25372, 388, 1}, {1, 773, 100640, 2813688, 16569442, 16569442, 2813688, 100640, 773, 1}, {1, 1542, 399397, 22400024, 284874586, 695614148, 284874586, 22400024, 399397, 1542, 1} MATHEMATICA Clear[p, n, m, x]; m = 0; p[x, 0] = 1; p[x, 1] = x + 1; p[x, n] = (x + 1)*p[ x, n - 1] + 2^(m + n - 1)*x*p[x, n - 2] + If[n >= 3, 2^(n - 2)*x*p[x, n - 2], 0]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A146898 A152970 A154986 * A324916 A156534 A168287 Adjacent sequences:  A154980 A154981 A154982 * A154984 A154985 A154986 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Jan 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 03:16 EDT 2019. Contains 328025 sequences. (Running on oeis4.)