OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 6, 24, 120, 816, 7392, 93120, 1605504, 38969088, 1310965248, ...}.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, m) = coefficients of p(x, n, m) where p(x,n,m) = (x+1)*p(x, n-1, m) + (2^(m+n-1) + 2^(n-2)*[n>=3])*x*p(x, n-2, m) and m=0.
T(n, k, m) = T(n-1, k, m) + T(n-1, k-1, m) + (2^(n+m-1) + 2^(n-2)*[n>=3])*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m=0. - G. C. Greubel, Mar 01 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 24, 70, 24, 1;
1, 49, 358, 358, 49, 1;
1, 98, 1559, 4076, 1559, 98, 1;
1, 195, 6361, 40003, 40003, 6361, 195, 1;
1, 388, 25372, 345692, 862598, 345692, 25372, 388, 1;
1, 773, 100640, 2813688, 16569442, 16569442, 2813688, 100640, 773, 1;
MATHEMATICA
(* First program *)
p[x_, n_, m_]:= p[x, n, m] = If[n<2, n*x+1, (x+1)*p[x, n-1, m] + 2^(m+n-1)*x*p[x, n-2, m] + Boole[n>=3]*2^(n-2)*x*p[x, n-2, m] ];
Table[CoefficientList[ExpandAll[p[x, n, 0]], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Mar 01 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m] = If[k==0 || k==n, 1, T[n-1, k, m] + T[n-1, k-1, m] +(2^(m+n-1) + Boole[n>=3]*2^(n-2))*T[n-2, k-1, m] ];
Table[T[n, k, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 01 2021 *)
PROG
(Sage)
def T(n, k, m):
if (k==0 or k==n): return 1
elif (n<3): return T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m)
else: return T(n-1, k, m) + T(n-1, k-1, m) + (2^(n+m-1) +2^(n-2))*T(n-2, k-1, m)
flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2021
(Magma)
function T(n, k, m)
if k eq 0 or k eq n then return 1;
elif (n lt 3) then return T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m);
else return T(n-1, k, m) + T(n-1, k-1, m) + (2^(n+m-1)+2^(n-2))*T(n-2, k-1, m);
end if; return T;
end function;
[T(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 01 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 18 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 01 2021
STATUS
approved