login
A154979
Triangle T(n, k, m) = coefficients of p(x, n, m) where p(x,n,m) = (x+1)*p(x, n-1, m) + 2^(m+n-1) *x*p(x, n-2, m) and m=2, read by rows.
7
1, 1, 1, 1, 10, 1, 1, 27, 27, 1, 1, 60, 374, 60, 1, 1, 125, 2162, 2162, 125, 1, 1, 254, 9967, 52196, 9967, 254, 1, 1, 511, 42221, 615635, 615635, 42221, 511, 1, 1, 1024, 172780, 5760960, 27955622, 5760960, 172780, 1024, 1, 1, 2049, 697068, 49168044, 664126822, 664126822, 49168044, 697068, 2049, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 12, 56, 496, 4576, 72640, 1316736, 39825152, 1427987968, 84417887232, ...}.
FORMULA
T(n, k, m) = coefficients of p(x, n, m) where p(x,n,m) = (x+1)*p(x, n-1, m) + 2^(m+n-1) *x*p(x, n-2, m) and m=2.
T(n, k, m) = T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m=2. - G. C. Greubel, Mar 01 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 27, 27, 1;
1, 60, 374, 60, 1;
1, 125, 2162, 2162, 125, 1;
1, 254, 9967, 52196, 9967, 254, 1;
1, 511, 42221, 615635, 615635, 42221, 511, 1;
1, 1024, 172780, 5760960, 27955622, 5760960, 172780, 1024, 1;
1, 2049, 697068, 49168044, 664126822, 664126822, 49168044, 697068, 2049, 1;
MATHEMATICA
(* First program *)
p[x_, n_, m_]:= p[x, n, m] = If[n<2, n*x+1, (x+1)*p[x, n-1, m] + 2^(m+n-1)*x*p[x, n-2, m]];
Table[CoefficientList[ExpandAll[p[x, n, 2]], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 01 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m] = If[k==0 || k==n, 1, T[n-1, k, m] + T[n-1, k-1, m] + 2^(n+m-1)*T[n-2, k-1, m]];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 01 2021 *)
PROG
(Sage)
def T(n, k, m):
if (k==0 or k==n): return 1
else: return T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m)
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2021
(Magma)
function T(n, k, m)
if k eq 0 or k eq n then return 1;
else return T(n-1, k, m) + T(n-1, k-1, m) + 2^(n+m-1)*T(n-2, k-1, m);
end if; return T;
end function;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 01 2021
CROSSREFS
Cf. A154982 (m=0), A154980 (m=1), this sequence (m=3).
Sequence in context: A166341 A113280 A159041 * A146765 A190152 A154984
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 18 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 01 2021
STATUS
approved