login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166341 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4, read by rows. 5
1, 1, 1, 1, 10, 1, 1, 23, 23, 1, 1, 50, 138, 50, 1, 1, 105, 614, 614, 105, 1, 1, 216, 2367, 4912, 2367, 216, 1, 1, 439, 8397, 31483, 31483, 8397, 439, 1, 1, 886, 28264, 176314, 314830, 176314, 28264, 886, 1, 1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
REFERENCES
Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
LINKS
FORMULA
T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4.
From G. C. Greubel, Mar 11 2022: (Start)
T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A007588(k), b(n, 0) = 1, and b(1, k) = 1.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 23, 23, 1;
1, 50, 138, 50, 1;
1, 105, 614, 614, 105, 1;
1, 216, 2367, 4912, 2367, 216, 1;
1, 439, 8397, 31483, 31483, 8397, 439, 1;
1, 886, 28264, 176314, 314830, 176314, 28264, 886, 1;
1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1;
MATHEMATICA
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n, 12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n, k, m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n, j, m], {j, 0, k}];
T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]];
Table[T[n, k, 3], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
PROG
(Sage)
def b(n, k, m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n, k, m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n, j, m) for j in (0..k) )
def A166341(n, k): return 1 if (k==1) else t(n-1, k, 3) - t(n-1, k-1, 3)
flatten([[A166341(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
CROSSREFS
Sequence in context: A143683 A146773 A202941 * A113280 A159041 A154979
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Oct 12 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 11 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 10:56 EDT 2024. Contains 371791 sequences. (Running on oeis4.)