login
A154295
a(n) = 81*n^2 - 90*n + 26.
4
26, 17, 170, 485, 962, 1601, 2402, 3365, 4490, 5777, 7226, 8837, 10610, 12545, 14642, 16901, 19322, 21905, 24650, 27557, 30626, 33857, 37250, 40805, 44522, 48401, 52442, 56645, 61010, 65537, 70226, 75077, 80090, 85265, 90602, 96101, 101762
OFFSET
0,1
COMMENTS
The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as a(n+1)^2 - A154262(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
FORMULA
a(n) = A002522(|9n-5|). - R. J. Mathar, Jan 07 2009
G.f.: (26 - 61*x + 197*x^2)/(1 - x)^3. - Vincenzo Librandi, Feb 03 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 03 2012
E.g.f.: (26 - 9*x + 81*x^2)*exp(x). - G. C. Greubel, Sep 10 2016
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {26, 17, 170}, 40] (* Vincenzo Librandi, Feb 03 2012 *)
Table[81*n^2 - 90*n + 26, {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)
PROG
(Magma) I:=[26, 17, 170]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
(PARI) for(n=0, 22, print1(81*n^2-90*n+26", ")); \\ Vincenzo Librandi, Feb 03 2012
(PARI) x='x+O('x^99); Vec((26-61*x+197*x^2)/(1-x)^3) \\ Altug Alkan, Sep 10 2016
CROSSREFS
Sequence in context: A131083 A203597 A040652 * A331498 A277685 A072360
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 06 2009
EXTENSIONS
Corrected by Don Reble, Jun 16 2010
STATUS
approved