login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154266 a(n) = 27*n + 12. 3
12, 39, 66, 93, 120, 147, 174, 201, 228, 255, 282, 309, 336, 363, 390, 417, 444, 471, 498, 525, 552, 579, 606, 633, 660, 687, 714, 741, 768, 795, 822, 849, 876, 903, 930, 957, 984, 1011, 1038, 1065, 1092, 1119, 1146, 1173, 1200, 1227, 1254, 1281, 1308, 1335 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - A154262(n+1)*a(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

From R. J. Mathar, Jan 05 2011: (Start)

G.f.: 3*(4 + 5*x)/(1-x)^2.

a(n) = 3*A017209(n). (End)

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 02 2012

E.g.f.: (27*x + 12)*exp(x). - G. C. Greubel, Sep 08 2016

MATHEMATICA

Range[12, 7000, 27] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)

LinearRecurrence[{2, -1}, {12, 39}, 50] (* Vincenzo Librandi, Feb 02 2012 *)

PROG

(PARI) a(n)=27*n+12 \\ Charles R Greathouse IV, Dec 28 2011

(MAGMA) I:=[12, 39]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012

CROSSREFS

Cf. A154262, A154295.

Sequence in context: A167712 A209872 A186779 * A236267 A119094 A226348

Adjacent sequences:  A154263 A154264 A154265 * A154267 A154268 A154269

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 06 2009

EXTENSIONS

119 replaced by 1119 - R. J. Mathar, Jan 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 08:31 EDT 2019. Contains 327127 sequences. (Running on oeis4.)