

A154298


Primes of the form (1+...+m)/33 = A000217(m)/33, for some m.


2




OFFSET

1,1


COMMENTS

Primes which are some triangular number A000217 divided by 33. Finiteness is shown with the same strategy as in A154297.
Original definition: Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=33.
The corresponding mvalues are m=11, 21, 33, 66 (cf. A154296). It is clear that for m>66, A000217(m)/33 = m(m+1)/66 cannot be a prime.  M. F. Hasler, Dec 31 2012


LINKS

Table of n, a(n) for n=1..4.


MATHEMATICA

lst={}; s=0; Do[s+=n/33; If[Floor[s]==s, If[PrimeQ[s], AppendTo[lst, s]]], {n, 0, 9!}]; lst


PROG

(PARI) select(x>denominator(x)==1 & isprime(x), vector(66, m, m^2+m)/66) \\  M. F. Hasler, Dec 31 2012


CROSSREFS

Cf. A057570, A154293, A154296  A154304.
Sequence in context: A182667 A067602 A216389 * A225806 A283754 A122382
Adjacent sequences: A154295 A154296 A154297 * A154299 A154300 A154301


KEYWORD

nonn,fini,full,easy


AUTHOR

Vladimir Joseph Stephan Orlovsky, Jan 06 2009


EXTENSIONS

Edited by M. F. Hasler, Dec 31 2012


STATUS

approved



