login
A153724
Greatest number m such that the fractional part of (Pi-2)^A153720(n) >= 1-(1/m).
7
1, 16, 8, 158, 946, 8786, 16159, 20188, 61392, 34039, 31425, 59154, 217556
OFFSET
1,2
FORMULA
a(n):=floor(1/(1-fract((Pi-2)^A153720(n)))), where fract(x) = x-floor(x).
EXAMPLE
a(4)=158, since 1-(1/159) = 0.993710... > fract((Pi-2)^A153720(4)) = fract(Pi^85) = 0.993693... >= 0.993670... = 1-(1/158).
MATHEMATICA
A153720 = {1, 5, 8, 85, 911, 2921, 4491, 11543, 15724, 27683, 29921,
37276, 126659};
Table[Floor[1/(1 - FractionalPart[(Pi - 2)^A153720[[n]]])], {n, 1,
Length[A153720]}] (* Robert Price, May 10 2019 *)
KEYWORD
nonn,more
AUTHOR
Hieronymus Fischer, Jan 06 2009
STATUS
approved