This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153725 Least number m such that floor((3^n-m)/(2^n-m)) > floor(3^n/2^n). 1
 1, 2, 2, 3, 2, 4, 7, 4, 8, 7, 12, 9, 17, 4, 8, 16, 99, 20, 39, 235, 49, 97, 194, 885, 1106, 439, 2059, 968, 4034, 5268, 3070, 1163, 2325, 4649, 9297, 18593, 16210, 4452, 8903, 67524, 68757, 49124, 98248, 39360, 288234, 17763, 35526, 567677, 1135354 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Provided A002379(n) = floor((3^n-1)/(2^n-1)) holds (which is proved only for 1 < n <= 305000), then a(n) > 1. LINKS David A. Corneth, Table of n, a(n) for n = 1..8005 FORMULA a(n) = ceiling(((f + 1)*(2^n) - 3^n)/f) where f = floor(3^n/2^n). - David A. Corneth, Mar 27 2019 EXAMPLE a(5)=2, since floor((3^5-1)/(2^5-1)) = floor(242/31) = 7 = floor(243/32) = floor(3^5/2^5), but floor((3^5-2)/(2^5-2)) = floor(241/30) = 8 > 7. MATHEMATICA Table[n3 = 3^n; n2 = 2^n; m = 1; While[Floor[(n3 - m)/(n2 - m)] <= Floor[n3/n2], m++]; m, {n, 1, 50}] (* Robert Price, Mar 27 2019 *) PROG (PARI) a(n) = my(f = floor(3^n/2^n)); ceil(((f + 1)*(2^n) - 3^n)/f) \\ David A. Corneth, Mar 27 2019 CROSSREFS Cf. A002379, A081464, A153701, A137994, A153717, A154130. Sequence in context: A241509 A268327 A053023 * A102247 A054249 A160273 Adjacent sequences:  A153722 A153723 A153724 * A153726 A153727 A153728 KEYWORD nonn,easy AUTHOR Hieronymus Fischer, Jan 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 11:06 EDT 2019. Contains 326057 sequences. (Running on oeis4.)