login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153597 a(n) = ((6 + sqrt(3))^n - (6 - sqrt(3))^n)/(2*sqrt(3)). 2
1, 12, 111, 936, 7569, 59940, 469503, 3656016, 28378593, 219894588, 1702241487, 13170376440, 101870548209, 787824155988, 6092161780959, 47107744223904, 364251591915201, 2816463543593580, 21777259989921327, 168383822940467784 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Fourth binomial transform of A055845.

lim_{n -> infinity} a(n)/a(n-1) = 6 + sqrt(3) = 7.73205080756887729....

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (12,-33).

FORMULA

G.f.: x/(1 - 12*x + 33*x^2). - Klaus Brockhaus, Dec 31 2008, (corrected Oct 11 2009)

a(n) = 12*a(n-1) - 33*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009

E.g.f.: sinh(sqrt(3)*x)*exp(6*x)/sqrt(3). - Ilya Gutkovskiy, Aug 23 2016

MATHEMATICA

LinearRecurrence[{12, -33}, {1, 12}, 25] (* G. C. Greubel, Aug 22 2016 *)

PROG

(MAGMA) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008

(Sage) [lucas_number1(n, 12, 33) for n in xrange(1, 21)] # Zerinvary Lajos, Apr 27 2009

(MAGMA) I:=[1, 12]; [n le 2 select I[n] else 12*Self(n-1)-33*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016

CROSSREFS

Cf. A002194 (decimal expansion of sqrt(3)), A055845.

Sequence in context: A075231 A085773 A066042 * A036733 A253091 A123933

Adjacent sequences:  A153594 A153595 A153596 * A153598 A153599 A153600

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

EXTENSIONS

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008

Edited by Klaus Brockhaus, Oct 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 09:48 EDT 2019. Contains 326324 sequences. (Running on oeis4.)