login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153598 a(n) = ((7 + sqrt(3))^n - (7 - sqrt(3))^n)/(2*sqrt(3)). 2
1, 14, 150, 1456, 13484, 121800, 1084936, 9586304, 84301200, 739246816, 6471600224, 56597049600, 494665084096, 4321846895744, 37751262672000, 329712720203776, 2879419999940864, 25145094869798400, 219578008179897856, 1917417750507843584 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

lim_{n -> infinity} a(n)/a(n-1) = 7 + sqrt(3) = 8.73205080756887729....

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (14,-46).

FORMULA

G.f.: x/(1 - 14*x + 46*x^2). - Klaus Brockhaus, Dec 31 2008, (corrected Oct 11 2009)

a(n) = 14*a(n-1) - 46*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009

MATHEMATICA

Join[{a=1, b=14}, Table[c=14*b-46*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)

LinearRecurrence[{14, -46}, {1, 14}, 20] (* Harvey P. Dale, Dec 05 2015 *)

PROG

(MAGMA) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((7+r)^n-(7-r)^n)/(2*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008

(MAGMA) I:=[1, 14]; [n le 2 select I[n] else 14*Self(n-1)-46*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016

CROSSREFS

Cf. A002194 (decimal expansion of sqrt(3)).

Sequence in context: A019521 A009614 A009802 * A180347 A262183 A037960

Adjacent sequences:  A153595 A153596 A153597 * A153599 A153600 A153601

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

EXTENSIONS

Typo corrected and extended beyond a(7) by Klaus Brockhaus, Dec 31 2008

Edited by Klaus Brockhaus, Oct 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 10:13 EDT 2019. Contains 321368 sequences. (Running on oeis4.)