login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153516 Triangle T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j) and (p,q,j) = (0,1,2), read by rows. 14
2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 33, 92, 33, 2, 2, 41, 200, 200, 41, 2, 2, 49, 340, 676, 340, 49, 2, 2, 57, 512, 1616, 1616, 512, 57, 2, 2, 65, 716, 3148, 5260, 3148, 716, 65, 2, 2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Rows n = 1..50 of the triangle, flattened

FORMULA

T(n,k,p,q,j) =  T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p, q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 - 4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 - 2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (0,1,2).

Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1) for (p,q,j) = (0,1,2) = 2*A000244(n-1).

EXAMPLE

Triangle begins as:

  2;

  3,  3;

  2, 14,   2;

  2, 25,  25,    2;

  2, 33,  92,   33,     2;

  2, 41, 200,  200,    41,     2;

  2, 49, 340,  676,   340,    49,    2;

  2, 57, 512, 1616,  1616,   512,   57,   2;

  2, 65, 716, 3148,  5260,  3148,  716,  65,  2;

  2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2;

MATHEMATICA

T[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];

Table[T[n, k, 0, 1, 2], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)

PROG

(Sage)

@CachedFunction

def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)

def T(n, k, p, q, j):

    if (n==2): return nth_prime(j)

    elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)

    elif (k==1 or k==n): return 2

    else: return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)

flatten([[T(n, k, 0, 1, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021

(Magma)

f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;

function T(n, k, p, q, j)

  if n eq 2 then return NthPrime(j);

  elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);

  elif (k eq 1 or k eq n) then return 2;

  else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);

  end if; return T;

end function;

[T(n, k, 0, 1, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021

CROSSREFS

Sequences with variable (p,q,j): this sequence (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).

Cf. A000244.

Sequence in context: A184829 A338307 A153290 * A153311 A153312 A153283

Adjacent sequences:  A153513 A153514 A153515 * A153517 A153518 A153519

KEYWORD

nonn,tabl,easy,less

AUTHOR

Roger L. Bagula, Dec 28 2008

EXTENSIONS

Edited by G. C. Greubel, Mar 03 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)