login
A153521
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + 11*T(n-2, k-1), read by rows.
15
2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1353, 5276, 1353, 2, 2, 1377, 21248, 21248, 1377, 2, 2, 1401, 37508, 100532, 37508, 1401, 2, 2, 1425, 54056, 371768, 371768, 54056, 1425, 2, 2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2, 2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2
OFFSET
1,1
FORMULA
T(n, k)= T(n-1, k) + T(n-1, k-1) + 11*T(n-2, k-1).
From _G. C. Greubel_, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (0,1,5).
Sum_{k=1..n} T(n,k,p,q,j) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for (p,q,j)=(0,1,5) = A151617(n).
Row sums satisfy the recurrence relation S(n) = 2*S(n-1) + prime(j)*S(n-2), for n > 4, with S(1) = 2, S(2) = 2*prime(j), S(3) = 2*prime(j)^2, S(4) = 2*prime(j)^3 for j=5. (End)
EXAMPLE
Triangle begins as:
2;
11, 11;
2, 238, 2;
2, 1329, 1329, 2;
2, 1353, 5276, 1353, 2;
2, 1377, 21248, 21248, 1377, 2;
2, 1401, 37508, 100532, 37508, 1401, 2;
2, 1425, 54056, 371768, 371768, 54056, 1425, 2;
2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2;
2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2;
MATHEMATICA
T[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];
Table[T[n, k, 0, 1, 5], {n, 12}, {k, n}]//Flatten (* modified by _G. C. Greubel_, Mar 04 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n, k, p, q, j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)
elif (k==1 or k==n): return 2
else: return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)
flatten([[T(n, k, 0, 1, 5) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 04 2021
(Magma)
f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n, k, p, q, j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);
end if; return T;
end function;
[T(n, k, 0, 1, 5): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 04 2021
CROSSREFS
Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), this sequence (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A151617 (row sums).
Sequence in context: A064743 A376606 A109868 * A153650 A338049 A256665
KEYWORD
nonn,tabl,easy,less
AUTHOR
_Roger L. Bagula_, Dec 28 2008
EXTENSIONS
Edited by _G. C. Greubel_, Mar 04 2021
STATUS
approved