login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153521 Triangular sequence recursion : A(n,k)= A(n - 1, k - 1) + A(n - 1, k) + 11*A(n - 2, k - 1). 0
2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1353, 5276, 1353, 2, 2, 1377, 21248, 21248, 1377, 2, 2, 1401, 37508, 100532, 37508, 1401, 2, 2, 1425, 54056, 371768, 371768, 54056, 1425, 2, 2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2, 2, 1473 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Row sums are in A151617.

LINKS

Table of n, a(n) for n=0..46.

FORMULA

A(n,k)= A(n - 1, k - 1) + A(n - 1, k) + 11*A(n - 2, k - 1).

EXAMPLE

{2},

{11, 11},

{2, 238, 2},

{2, 1329, 1329, 2},

{2, 1353, 5276, 1353, 2},

{2, 1377, 21248, 21248, 1377, 2},

{2, 1401, 37508, 100532, 37508, 1401, 2},

{2, 1425, 54056, 371768, 371768, 54056, 1425, 2},

{2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2},

{2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2}

MATHEMATICA

Clear[t, n, m, A, a];

j = 5; A[2, 1] := A[2, 2] = Prime[j];

A[3, 2] = 2*Prime[j]^2 - 4;

A[4, 2] = A[4, 3] = Prime[j]^3 - 2;;

A[n_, 1] := 2; A[n_, n_] := 2;

A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + Prime[j]*A[n - 2, k - 1];

Table[Table[A[n, m], {m, 1, n}], {n, 1, 10}];

Flatten[%] Table[Sum[A[n, m], {m, 1, n}], {n, 1, 10}] ; Table[Sum[A[n, m], {m, 1, n}]/(2*Prime[j]^(n - 1)), {n, 1, 10}] ;

CROSSREFS

Sequence in context: A163344 A064743 A109868 * A153650 A256665 A086862

Adjacent sequences:  A153518 A153519 A153520 * A153522 A153523 A153524

KEYWORD

nonn,uned,tabl

AUTHOR

Roger L. Bagula, Dec 28 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 05:25 EDT 2019. Contains 326139 sequences. (Running on oeis4.)