login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153312 Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 3)*Sum[x^i, {i, 1, n - 2}]); Row sums approximate 2*3^n. 0
2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 36, 86, 36, 2, 2, 47, 140, 140, 47, 2, 2, 76, 241, 334, 241, 76, 2, 2, 159, 479, 737, 737, 479, 159, 2, 2, 404, 1124, 1702, 1960, 1702, 1124, 404, 2, 2, 1135, 2986, 4284, 5120, 5120, 4284, 2986, 1135, 2, 2, 3324, 8495, 11644, 13778 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Row sums:

{2, 6, 18, 54, 162, 378, 972, 2754, 8424, 27054, 89100,...}.

LINKS

Table of n, a(n) for n=0..59.

FORMULA

p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 3)*Sum[x^i, {i, 1, n - 2}]).

EXAMPLE

{2},

{3, 3},

{2, 14, 2},

{2, 25, 25, 2},

{2, 36, 77, 45, 2},

{2, 65, 167, 176, 74, 2},

{2, 148, 313, 424, 412, 157, 2},

{2, 393, 704, 980, 1079, 812, 402, 2},

{2, 1124, 1826, 1684, 2788, 2620, 1943, 1133, 2},

{2, 3313, 5137, 3510, 6659, 7595, 4563, 5263, 3322, 2},

{2, 9876, 15011, 8647, 10169, 20815, 18719, 9826, 15146, 9885, 2}

MATHEMATICA

Clear[p, n, m, x];

p[x, 3] = 2*x^3 + 25*x^2 + 25*x + 2;

p[x, 4] = 2*x^4 + 36*x^3 + 86*x^2 + 36*x + 2;

p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 3)*Sum[x^i, {i, 1, n - 2}]);

Table[ExpandAll[p[x, n]], {n, 0, 10}];

Table[CoefficientList[p[x, n], x], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A153290 A153516 A153311 * A153283 A153288 A153479

Adjacent sequences:  A153309 A153310 A153311 * A153313 A153314 A153315

KEYWORD

nonn,uned,tabl

AUTHOR

Roger L. Bagula, Dec 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.