|
|
A153076
|
|
Smallest number m such that sigma(m) = A002110(n) where A002110(n) is the product of the first n primes.
|
|
5
|
|
|
5, 29, 104, 1538, 13842, 188424, 3249576, 101864576, 2388809736, 59720243400, 2571228006912, 85266458294400, 6038197537693842, 227036227417289064, 12129959730964036050, 606111287080086323712, 36186481977293685109248
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Ray Chandler, Max Alekseyev, Table of n, a(n) for n = 2..24
Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2
|
|
FORMULA
|
a(n) = A051444(A002110(n)). - Ray Chandler
|
|
EXAMPLE
|
a(9) = 101864576. Sigma(101864576) = A002110(9) = 223092870 = 2*3*5*7*11*13*17*19*23.
|
|
CROSSREFS
|
Cf. A000203, A002110, A153077, A153078.
Sequence in context: A139856 A097345 A097344 * A034700 A057721 A085151
Adjacent sequences: A153073 A153074 A153075 * A153077 A153078 A153079
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Donovan Johnson, Dec 19 2008
|
|
EXTENSIONS
|
Extended by Ray Chandler, Dec 28 2008
a(22)-a(24) added to b-file by Max Alekseyev, Jan 31 2012
|
|
STATUS
|
approved
|
|
|
|