|
|
A153077
|
|
Largest number m such that sigma(m) = A002110(n) where A002110(n) is the product of the first n primes.
|
|
3
|
|
|
5, 29, 116, 2309, 30029, 272264, 6715161, 154448901, 3696967556, 126321788241, 5984466237725, 304250263527209, 7475863618097156, 495878856926202725, 17521052944725830450, 1749278213298193453469, 65483587607609351045025
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Ray Chandler, Max Alekseyev, Table of n, a(n) for n = 2..24
Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2
|
|
FORMULA
|
a(n) = A057637(A002110(n)). - Chandler
a(A057704(n)) = A002110(A057704(n)) - 1. - Ray Chandler
|
|
EXAMPLE
|
a(9) = 154448901. Sigma(154448901) = A002110(9) = 223092870 = 2*3*5*7*11*13*17*19*23.
|
|
CROSSREFS
|
Cf. A000203, A002110, A153076, A153078.
Sequence in context: A268929 A268244 A297632 * A000352 A327133 A267921
Adjacent sequences: A153074 A153075 A153076 * A153078 A153079 A153080
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Donovan Johnson, Dec 19 2008
|
|
EXTENSIONS
|
Extended by Ray Chandler, Dec 28 2008
Terms a(22)-a(24) in b-file from Max Alekseyev, Jan 29 2012
|
|
STATUS
|
approved
|
|
|
|