

A153073


Numerators of the convergents of the continued fraction for L(3, chi4), where L(s, chi4) is the Dirichlet Lfunction for the nonprincipal character modulo 4.


3



0, 1, 0, 1, 31, 125, 156, 2933, 61749, 64682, 126431, 317544, 443975, 1205494, 1649469, 6153901, 38572875, 121872526, 3451003603, 3572876129, 14169631990, 31912140109, 46081772099, 124075684307, 2651671142546
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,5


REFERENCES

Leonhard Euler, ``Introductio in Analysin Infinitorum'', First Part, Articles 175, 284 and 287
Bruce C. Berndt, ``Ramanujan's Notebooks, Part II'', SpringerVerlag, 1989. See page 293, Entry 25 (iii).


LINKS

Table of n, a(n) for n=2..22.


FORMULA

chi4(k) = Kronecker(4, k); chi4(k) is 0, 1, 0, 1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.
Series: L(3, chi4) = sum_{k=1..infinity} chi4(k) k^{3} = 1  1/3^3 + 1/5^3  1/7^3 + 1/9^3  1/11^3 + 1/13^3  1/15^3 + ...
Series: L(3, chi4) = sum_{k=0..infinity} tanh((2k+1) pi/2)/(2k+1)^3 [Ramanujan; see Berndt, page 293]
Closed form: L(3, chi4) = pi^3/32


EXAMPLE

L(3, chi4) = 0.9689461462593693804836348458469186... = [0; 1, 31, 4, 1, 18, 21, 1, 1, 2, 1, 2, 1, 3, 6, 3, 28, ...], the convergents of which are 0/1, 1/0, [0/1], 1/1, 31/32, 125/129, 156/161, 2933/3027, 61749/63728, 64682/66755, 126431/130483, 317544/327721, 443975/458204, ..., with brackets marking index 0. Those prior to index 0 are for initializing the recurrence.


MATHEMATICA

nmax = 100; cfrac = ContinuedFraction[Pi^3/32, nmax + 1]; Join[ {0, 1}, Numerator[ Table[ FromContinuedFraction[ Take[cfrac, j] ], {j, 1, nmax + 1} ] ] ]


CROSSREFS

Cf. A153071, A153072, A153074
Sequence in context: A068021 A131992 A042884 * A042886 A042888 A183836
Adjacent sequences: A153070 A153071 A153072 * A153074 A153075 A153076


KEYWORD

nonn,frac,easy


AUTHOR

Stuart Clary, Dec 17, 2008


STATUS

approved



