This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153073 Numerators of the convergents of the continued fraction for L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4. 3
 0, 1, 0, 1, 31, 125, 156, 2933, 61749, 64682, 126431, 317544, 443975, 1205494, 1649469, 6153901, 38572875, 121872526, 3451003603, 3572876129, 14169631990, 31912140109, 46081772099, 124075684307, 2651671142546 (list; graph; refs; listen; history; text; internal format)
 OFFSET -2,5 REFERENCES Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 175, 284 and 287. Bruce C. Berndt, "Ramanujan's Notebooks, Part II", Springer-Verlag, 1989. See page 293, Entry 25 (iii). LINKS FORMULA chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455. Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ... Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293] Closed form: L(3, chi4) = Pi^3/32. EXAMPLE L(3, chi4) = 0.9689461462593693804836348458469186... = [0; 1, 31, 4, 1, 18, 21, 1, 1, 2, 1, 2, 1, 3, 6, 3, 28, ...], the convergents of which are 0/1, 1/0, [0/1], 1/1, 31/32, 125/129, 156/161, 2933/3027, 61749/63728, 64682/66755, 126431/130483, 317544/327721, 443975/458204, ..., with brackets marking index 0. Those prior to index 0 are for initializing the recurrence. MATHEMATICA nmax = 100; cfrac = ContinuedFraction[Pi^3/32, nmax + 1]; Join[ {0, 1}, Numerator[ Table[ FromContinuedFraction[ Take[cfrac, j] ], {j, 1, nmax + 1} ] ] ] CROSSREFS Cf. A153071, A153072, A153074. Sequence in context: A068021 A131992 A042884 * A042886 A042888 A183836 Adjacent sequences:  A153070 A153071 A153072 * A153074 A153075 A153076 KEYWORD nonn,frac,easy AUTHOR Stuart Clary, Dec 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.