login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153073 Numerators of the convergents of the continued fraction for L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4. 3
0, 1, 0, 1, 31, 125, 156, 2933, 61749, 64682, 126431, 317544, 443975, 1205494, 1649469, 6153901, 38572875, 121872526, 3451003603, 3572876129, 14169631990, 31912140109, 46081772099, 124075684307, 2651671142546 (list; graph; refs; listen; history; text; internal format)
OFFSET

-2,5

REFERENCES

Leonhard Euler, ``Introductio in Analysin Infinitorum'', First Part, Articles 175, 284 and 287

Bruce C. Berndt, ``Ramanujan's Notebooks, Part II'', Springer-Verlag, 1989. See page 293, Entry 25 (iii).

LINKS

Table of n, a(n) for n=-2..22.

FORMULA

chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.

Series: L(3, chi4) = sum_{k=1..infinity} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ...

Series: L(3, chi4) = sum_{k=0..infinity} tanh((2k+1) pi/2)/(2k+1)^3 [Ramanujan; see Berndt, page 293]

Closed form: L(3, chi4) = pi^3/32

EXAMPLE

L(3, chi4) = 0.9689461462593693804836348458469186... = [0; 1, 31, 4, 1, 18, 21, 1, 1, 2, 1, 2, 1, 3, 6, 3, 28, ...], the convergents of which are 0/1, 1/0, [0/1], 1/1, 31/32, 125/129, 156/161, 2933/3027, 61749/63728, 64682/66755, 126431/130483, 317544/327721, 443975/458204, ..., with brackets marking index 0. Those prior to index 0 are for initializing the recurrence.

MATHEMATICA

nmax = 100; cfrac = ContinuedFraction[Pi^3/32, nmax + 1]; Join[ {0, 1}, Numerator[ Table[ FromContinuedFraction[ Take[cfrac, j] ], {j, 1, nmax + 1} ] ] ]

CROSSREFS

Cf. A153071, A153072, A153074

Sequence in context: A068021 A131992 A042884 * A042886 A042888 A183836

Adjacent sequences:  A153070 A153071 A153072 * A153074 A153075 A153076

KEYWORD

nonn,frac,easy

AUTHOR

Stuart Clary, Dec 17, 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 22 05:51 EDT 2014. Contains 248388 sequences.