%I #13 Feb 24 2021 02:48:18
%S 0,0,0,0,1,2,1,0,3,8,11,13,15,13,5,0,7,20,31,41,51,57,57,59,69,79,82,
%T 81,74,51,17,0,15,44,71,97,123,145,161,179,205,231,250,265,274,267,
%U 249,247,273,307,334,357,374,375,364,363,376,380,364,332,270,163,49,0,31,92,151
%N Triangular number A000217(n) minus toothpick number A153006(n).
%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H OEIS (Plot 2), <a href="/plot2a?name1=A000217&name2=A153006&tform1=untransformed&tform2=untransformed&shift=0&radiop1=matp&drawpoints=true&drawlines=true">Triangular numbers (A000217) and toothpick numbers (A153006) vs n</a> [From _Omar E. Pol_, Apr 29 2009]
%F a(n) = A000217(n)-A153006(n).
%Y Cf. A000217, A000225, A000396, A000668, A006516, A139250, A139251, A152980, A153006.
%K nonn
%O 0,6
%A _Omar E. Pol_, Dec 19 2008, May 27 2009
%E More terms from _R. J. Mathar_, Jul 13 2009