login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152977 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^n into powers of 2 less than or equal to 2^k. 13
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 9, 9, 1, 1, 2, 4, 10, 25, 17, 1, 1, 2, 4, 10, 35, 81, 33, 1, 1, 2, 4, 10, 36, 165, 289, 65, 1, 1, 2, 4, 10, 36, 201, 969, 1089, 129, 1, 1, 2, 4, 10, 36, 202, 1625, 6545, 4225, 257, 1, 1, 2, 4, 10, 36, 202, 1827, 17361, 47905, 16641, 513, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Column sequences converge towards A002577.

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..k-1} (1-x^(2^j)) for n>0; A(0,k) = 1.

EXAMPLE

A(3,2) = 9, because there are 9 partitions of 2^3=8 into powers of 2 less than or equal to 2^2=4: [4,4], [4,2,2], [4,2,1,1], [4,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].

Square array A(n,k) begins:

  1,  1,  1,   1,   1,   1,  ...

  1,  2,  2,   2,   2,   2,  ...

  1,  3,  4,   4,   4,   4,  ...

  1,  5,  9,  10,  10,  10,  ...

  1,  9, 25,  35,  36,  36,  ...

  1, 17, 81, 165, 201, 202,  ...

MAPLE

b:= proc(n, j) local nn, r;

      if n<0 then 0

    elif j=0 then 1

    elif j=1 then n+1

    elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)

             else nn:= 1 +floor(n);

                  r:= n-nn;

                  (nn-j) *binomial(nn, j) *add(binomial(j, h)

                  /(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)

      fi

    end:

A:= (n, k)-> `if`(n=0, 1, b(2^(n-k), k)):

seq(seq(A(n, d-n), n=0..d), d=0..11);

MATHEMATICA

b[n_, j_] := Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j, b[n, j] = b[n-1, j]+b[2*n, j-1], True, nn = 1+Floor[n]; r := n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_, k_] := If[n == 0, 1, b[2^(n-k), k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-Fran├žois Alcover, Dec 18 2013, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000012, A094373, A028400(n-2) for n>1, A210772, A210773, A210774, A210775, A210776, A210777, A210778, A210779.

Cf. A002577, A000123, A181322, A145515.

Main diagonal and lower diagonals give: A002577, A125792, A125794.

Sequence in context: A199711 A048887 A047913 * A259799 A208447 A320750

Adjacent sequences:  A152974 A152975 A152976 * A152978 A152979 A152980

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jan 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)