login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152977 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^n into powers of 2 less than or equal to 2^k. 13
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 9, 9, 1, 1, 2, 4, 10, 25, 17, 1, 1, 2, 4, 10, 35, 81, 33, 1, 1, 2, 4, 10, 36, 165, 289, 65, 1, 1, 2, 4, 10, 36, 201, 969, 1089, 129, 1, 1, 2, 4, 10, 36, 202, 1625, 6545, 4225, 257, 1, 1, 2, 4, 10, 36, 202, 1827, 17361, 47905, 16641, 513, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Column sequences converge towards A002577.

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..k-1} (1-x^(2^j)) for n>0; A(0,k) = 1.

EXAMPLE

A(3,2) = 9, because there are 9 partitions of 2^3=8 into powers of 2 less than or equal to 2^2=4: [4,4], [4,2,2], [4,2,1,1], [4,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].

Square array A(n,k) begins:

1,  1,  1,   1,   1,   1,  ...

1,  2,  2,   2,   2,   2,  ...

1,  3,  4,   4,   4,   4,  ...

1,  5,  9,  10,  10,  10,  ...

1,  9, 25,  35,  36,  36,  ...

1, 17, 81, 165, 201, 202,  ...

MAPLE

b:= proc(n, j) local nn, r;

      if n<0 then 0

    elif j=0 then 1

    elif j=1 then n+1

    elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)

             else nn:= 1 +floor(n);

                  r:= n-nn;

                  (nn-j) *binomial(nn, j) *add(binomial(j, h)

                  /(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)

      fi

    end:

A:= (n, k)-> `if`(n=0, 1, b(2^(n-k), k)):

seq(seq(A(n, d-n), n=0..d), d=0..11);

MATHEMATICA

b[n_, j_] := Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j, b[n, j] = b[n-1, j]+b[2*n, j-1], True, nn = 1+Floor[n]; r := n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_, k_] := If[n == 0, 1, b[2^(n-k), k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-Fran├žois Alcover, Dec 18 2013, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000012, A094373, A028400(n-2) for n>1, A210772, A210773, A210774, A210775, A210776, A210777, A210778, A210779.

Cf. A002577, A000123, A181322, A145515.

Diagonal and lower diagonals give: A002577, A125792, A125794.

Sequence in context: A199711 A048887 A047913 * A259799 A208447 A117935

Adjacent sequences:  A152974 A152975 A152976 * A152978 A152979 A152980

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jan 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 01:03 EDT 2018. Contains 303149 sequences. (Running on oeis4.)