login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125792 Column 2 of table A125790; also equals row sums of matrix power A078121^2. 12
1, 3, 9, 35, 201, 1827, 27337, 692003, 30251721, 2320518947, 316359580361, 77477180493603, 34394869942983369, 27893897106768940835, 41603705003444309596873, 114788185359199234852802339, 588880400923055731115178072777, 5642645813427132737155703265972003 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Triangle A078121 shifts left one column under matrix square and is related to partitions into powers of 2.

Number of partitions of 2^n into powers of 2, excluding the trivial partition 2^n=2^n. [From Valentin Bakoev (v_bakoev(AT)yahoo.com), Feb 15 2009]

REFERENCES

Bakoev V., Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp.17-41. [From Valentin Bakoev (v_bakoev(AT)yahoo.com), Feb 15 2009]

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..50

V. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.

FORMULA

Is this sequence the same as A002575 (coefficients of Bell's formula)?

Denote the sum: m^n+m^n+...+m^n, k times, by k.m^n (m>1, n>0 and k are natural numbers). The general formula for the number of all partitions of the sum: k.m^n into powers of m, smaller than m^n, is: t_m(n, k)= 1 when n=1 or k=0, or = t_m(n, k-1)+\sum_{j=1}^m {t_m(n-1, (k-1).n+j)}, when n>1 and k>0. A125792 is obtained for m=2 and n=1,2,3,... [From Valentin Bakoev (v_bakoev(AT)yahoo.com), Feb 15 2009]

a(n) = A145515(n+1,2)-1. - Alois P. Heinz, Feb 27 2009

From Benedict W. J. Irwin, Nov 16 2016: (Start)

Conjecture: a(n+1) = Sum_{i_1=1..3}Sum_{i_2=1..2*i_1-1}...Sum_{i_n=1..2*i_(n-1)-1} (2*i_n - 1). For example:

a(2) = Sum_{i=1..3} 2*i-1.

a(3) = Sum_{i=1..3}Sum_{j=1..2*i-1} 2*j-1.

a(4) = Sum_{i=1..3}Sum_{j=1..2*i-1}Sum_{k=1..2*j-1} 2*k-1. (End)

EXAMPLE

G.f. = 1 + 3*x + 9*x^2 + 35*x^3 + 201*x^4 + 1827*x^5 + 27337*x^6 + 692003*x^7 + ...

To obtain t_2(5,1) we use the table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,5(=n), and j= 0,1,2,...,16(= k.m^{n-1}). It is: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 1,3,5,7,9,11,13,15,17 1,9,25,49,81 1,35,165 1,201 Column 1 contains the first 5 members of A125792. [From Valentin Bakoev (v_bakoev(AT)yahoo.com), Feb 15 2009]

MAPLE

g:= proc(b, n, k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1, n+1, 2)-1: seq(a(n), n=0..25);  # Alois P. Heinz, Feb 27 2009

MATHEMATICA

T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, _] = T[_, 0] = 1; Table[T[n, 2], {n, 0, 20} ] (* Jean-Fran├žois Alcover, Jun 15 2015 *)

PROG

(PARI) {a(n)=local(p=2, q=2, A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0, n, (A^p)[n+1, c+1]))}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n, k=3) = if(n<1, n==0, sum(i=1, k, a(n-1, 2*i-1)))}; /* Michael Somos, Nov 24 2016 */

CROSSREFS

Cf. A125790, A078121; A002575; columns: A002577, A125793, A125794, A125795, A125796; diagonals: A125797, A125798.

Adding 1 to the members of A125792 we obtain A002577. [From Valentin Bakoev (v_bakoev(AT)yahoo.com), Feb 15 2009]

A diagonal of A152977.

Sequence in context: A129094 A059424 A002575 * A223310 A149020 A187980

Adjacent sequences:  A125789 A125790 A125791 * A125793 A125794 A125795

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 15:05 EDT 2017. Contains 284273 sequences.