login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210775 Number of partitions of 2^n into powers of 2 less than or equal to 64. 2
1, 2, 4, 10, 36, 202, 1828, 27337, 664665, 23693265, 1092226081, 58686573121, 3431048928385, 209706732148993, 13113096655221249, 829504773400454145, 52778852611947546625, 3367976225848670392321, 215235141069830389702657, 13764966441742878856593409 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..175

Index entries for sequences related to linear recurrences with constant coefficients, signature (127, -5334, 94488, -755904, 2731008, -4161536, 2097152).

FORMULA

G.f.: -(7864320*x^12 -12132352*x^11 +4458752*x^10 -24624*x^9 +211146*x^8 +332009*x^7 +946454*x^6 -1548182*x^5 +587030*x^4 -84318*x^3 +5084*x^2 -125*x+1) / Product_{j=0..6} (2^j*x-1).

a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..5} (1-x^(2^j)) for n>0.

MAPLE

a:= n-> `if`(n<7, [1, 2, 4, 10, 36, 202, 1828][n+1], (Matrix(7, (i, j)-> `if`(i=j-1, 1, `if`(i=7, [2097152, -4161536, 2731008, -755904, 94488, -5334, 127][j], 0)))^(n-6). <<1828, 27337, 664665, 23693265, 1092226081, 58686573121, 3431048928385>>)[1, 1]): seq (a(n), n=0..20);

CROSSREFS

Column k=6 of A152977.

Sequence in context: A066278 A210773 A210774 * A210776 A210777 A210778

Adjacent sequences:  A210772 A210773 A210774 * A210776 A210777 A210778

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Mar 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 04:30 EST 2014. Contains 252079 sequences.