login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152728
a(n) + a(n+1) + a(n+2) = n^3.
7
0, 0, 0, 1, 7, 19, 38, 68, 110, 165, 237, 327, 436, 568, 724, 905, 1115, 1355, 1626, 1932, 2274, 2653, 3073, 3535, 4040, 4592, 5192, 5841, 6543, 7299, 8110, 8980, 9910, 10901, 11957, 13079, 14268, 15528, 16860, 18265, 19747, 21307, 22946, 24668, 26474
OFFSET
0,5
COMMENTS
The differences between the terms are (1) a(3*k) - a(3*k-1) = 9*k*(k-1)+1; (2) otherwise, a(n) - a(n-1) = (n-2)*(n-1). - J. M. Bergot, Jul 10 2013
Second differences give A047266. - J. M. Bergot, Dec 01 2014
FORMULA
From R. J. Mathar, Aug 15 2010: (Start)
a(n) = ( (n-1)*(n^2-2*n-1) - A057078(n))/3.
G.f.: x^3*(1+4*x+x^2) / ( (1+x+x^2)*(x-1)^4 ). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-5). - Charles R Greathouse IV, Jul 10 2013
a(3n) = n*(9n^2-9n+1), a(3n+1) = n*(9n^2-2), a(3n+2) = n*(9n^2+9n+1). - Ralf Stephan, Jul 12 2013
a(n) = ceiling((n^3 - 3*n^2 + n)/3). - Robert Israel, Dec 01 2014
E.g.f.: (3*exp(x)*(1 - x + x^3) - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Mar 04 2023
MAPLE
seq(ceil((n^3 - 3*n^2 + n)/3), n=0..100); # Robert Israel, Dec 01 2014
MATHEMATICA
k0=k1=0; lst={k0, k1}; Do[kt=k1; k1=n^3-k1-k0; k0=kt; AppendTo[lst, k1], {n, 1, 4!}]; lst
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 0, 0, 1, 7, 19}, 50] (* G. C. Greubel, Sep 01 2018 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(x^3*(1+4*x+x^2)/((1+x+x^2)*(x -1)^4 ))) \\ G. C. Greubel, Sep 01 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0, 0] cat Coefficients(R!(x^3*(1+4*x+x^2)/((1+x+x^2)*(x-1)^4))); // G. C. Greubel, Sep 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved