login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152729 a(n)+a(n+1)+a(n+2)=n^4. 4
0, 0, 1, 15, 65, 176, 384, 736, 1281, 2079, 3201, 4720, 6720, 9296, 12545, 16575, 21505, 27456, 34560, 42960, 52801, 64239, 77441, 92576, 109824, 129376, 151425, 176175, 203841, 234640, 268800, 306560, 348161, 393855, 443905, 498576, 558144 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..37.

Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-5,6,-4,1).

FORMULA

a(n)=-(1/3)+(4/3)*(n-1)^3+(2/3)*(n-1)^2-(4/3)*(n-1)-[(1/6)*I]*sqrt(3)*[ -(1/2)+(1/2)*I*sqrt(3)]^(n-1)+(1/6)*[ -(1/2)-(1/2)*I*sqrt(3)]^(n-1)+(1/3)*(n-1)^4+(1/6)*[ -(1/2)+(1/2)*I*sqrt(3)]^(n-1)+(1/6)*I*sqrt(3)*[ -(1/2)-(1/2)*I*sqrt(3)]^(n-1) with n>=0 and I=sqrt(-1). - Paolo P. Lava, Dec 19 2008

G.f.: -x^3*(x+1)*(x^2+10*x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Oct 28 2014

EXAMPLE

0+0+1=1^4; 0+1+15=2^4; 1+15+65=3^4; ...

MATHEMATICA

k0=k1=0; lst={k0, k1}; Do[kt=k1; k1=n^4-k1-k0; k0=kt; AppendTo[lst, k1], {n, 1, 4!}]; lst

PROG

(PARI) concat([0, 0], Vec(-x^3*(x+1)*(x^2+10*x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014

CROSSREFS

Cf. A152728, A152725, A152726, A000212.

Sequence in context: A005917 A218216 A027455 * A055268 A090026 A027526

Adjacent sequences:  A152726 A152727 A152728 * A152730 A152731 A152732

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Dec 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 07:06 EST 2018. Contains 299473 sequences. (Running on oeis4.)