login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152132
Maximal length of rook tour on an n X n+1 board.
5
2, 8, 24, 54, 104, 174, 270, 396, 558, 756, 996, 1282, 1620, 2010, 2458, 2968, 3546, 4192, 4912, 5710, 6592, 7558, 8614, 9764, 11014, 12364, 13820, 15386, 17068, 18866, 20786, 22832, 25010, 27320, 29768, 32358, 35096, 37982, 41022, 44220, 47582
OFFSET
1,1
REFERENCES
M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.
FORMULA
G.f.: -2*x*(-1-x-2*x^3-2*x^4-3*x^2+x^5)/(1+x)/(x^2+1)/(x-1)^4.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -3*a(n-5) +3*a(n-6) -a(n-7).
a(n) = 2*n^3/3+n^2-7*n/6+3/4-(-1)^n/4-A087960(n)/2.
MAPLE
# Figure 43 of the Gardner book:
C := proc(n, m)
if type(m, even) and type(n, even) then
2 ;
elif type(m, odd) and type(n, odd) then
1 ;
elif type(m, even) and type(n, odd) and type(floor(n/2), even) then
3/2 ;
elif type(m, even) and type(n, odd) and type(floor(n/2), odd) then
1/2 ;
elif type(m, odd) and type(n, even) and type(floor(n/2), even) then
0 ;
elif type(m, odd) and type(n, even) and type(floor(n/2), odd) then
1 ;
fi;
end:
# formula for n X m boards, from the Gardner book:
T := proc(n, m)
n*(3*m^2+n^2-10)/6+C(n, m) ;
end:
for n from 1 to 24 do
m := n+3 ; # third diagonal here, for example
printf("%d, ", T(n, m)) ;
od:
MATHEMATICA
CoefficientList[Series[-2 * (-1 - x - 2*x^3 - 2*x^4 - 3*x^2 + x^5)/(1 + x)/(x^2 + 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 14 2012 *)
PROG
(Magma) I:=[2, 8, 24, 54, 104, 174, 270]; [n le 7 select I[n] else 3*Self(n-1) - 3*Self(n-2) + Self(n-3) + Self(n-4) - 3*Self(n-5) + 3*Self(n-6)- Self(n-7): n in [1..50]]; // Vincenzo Librandi, Dec 14 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 22 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 22 2009
STATUS
approved