login
A152134
Maximal length of rook tour on an n X n+3 board.
4
8, 24, 54, 102, 174, 270, 396, 556, 756, 996, 1282, 1618, 2010, 2458, 2968, 3544, 4192, 4912, 5710, 6590, 7558, 8614, 9764, 11012, 12364, 13820, 15386, 17066, 18866, 20786, 22832, 25008, 27320, 29768, 32358, 35094, 37982, 41022, 44220, 47580
OFFSET
1,1
REFERENCES
M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.
FORMULA
G.f.: -2*x*(-4-3*x^2-2*x^3+x^4)/(1+x)/(x^2+1)/(x-1)^4.
a(n) = 17*n/6+3/4+2*n^3/3+3*n^2+A132429(n+3)/4. - R. J. Mathar, Sep 27 2009
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7). - Vincenzo Librandi, Dec 19 2012
MATHEMATICA
CoefficientList[Series[-2*(- 4 - 3*x^2 - 2*x^3 + x^4)/(1+x)/(x^2+1)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
PROG
(Magma) I:=[8, 24, 54, 102, 174, 270, 396]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)+Self(n-4)-3*Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 22 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 27 2009
STATUS
approved