login
A148777
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 1), (1, 0, -1), (1, 1, 0)}.
0
1, 1, 3, 8, 23, 73, 234, 776, 2644, 9083, 31798, 112573, 401632, 1447849, 5250062, 19159941, 70348134, 259380839, 960905588, 3573310663, 13333335695, 49921215233, 187424343330, 705582305317, 2662797151989, 10071249093516, 38173345073744, 144964048212063, 551496111035625, 2101633645352274
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A176605 A080410 A230952 * A124462 A047857 A101495
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved