login
A148775
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (0, 1, -1), (1, 0, 1)}.
0
1, 1, 3, 8, 23, 70, 230, 739, 2500, 8370, 28991, 99970, 349834, 1226731, 4351244, 15435419, 55192536, 197505927, 711400471, 2564339924, 9282708868, 33648704177, 122394201777, 445702835088, 1627270308113, 5948153784327, 21791000320845, 79913206409881, 293574773411370, 1079615081555543, 3976250333077778
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A215512 A061557 A000782 * A148776 A353067 A127385
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved