This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146331 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 6. 3
 18, 19, 22, 38, 39, 44, 54, 57, 58, 59, 66, 68, 70, 74, 86, 102, 105, 107, 111, 112, 114, 115, 130, 131, 146, 147, 148, 150, 159, 164, 175, 178, 183, 186, 187, 198, 203, 253, 258, 260, 264, 267, 273, 275, 278, 294, 303, 308, 309, 326, 327, 330, 333, 341, 346 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For primes in this sequence see A146351. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE a(2) = 19 because continued fraction of (1+sqrt(19))/2 = 2, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1 ... has period (1, 2, 8, 2, 1, 3) length 6. MAPLE A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146331 := proc(n) RETURN(A146326(n) = 6) ; end: for n from 2 to 380 do if isA146331(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Sep 06 2009 MATHEMATICA s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 500}]; bb = {}; Do[If[aa[[n]] == 6, AppendTo[bb, n]], {n, 1, Length[aa]}]; bb (* Artur Jasinski *) cf6Q[n_]:=Module[{c=(1+Sqrt[n])/2}, !IntegerQ[c]&&Length[ContinuedFraction[ c][[2]]]==6]; Select[Range[400], cf6Q] (* Harvey P. Dale, May 30 2012 *) CROSSREFS Cf. A000290, A078370, A146326-A146345, A146348-A146360. Sequence in context: A025144 A241267 A241848 * A031956 A095393 A301601 Adjacent sequences:  A146328 A146329 A146330 * A146332 A146333 A146334 KEYWORD nonn AUTHOR Artur Jasinski, Oct 30 2008 EXTENSIONS 39, 68, 150, 203, etc. added by R. J. Mathar, Sep 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 07:53 EDT 2019. Contains 324347 sequences. (Running on oeis4.)