This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078370 a(n) = 4*(n+1)*n + 5. 48
 5, 13, 29, 53, 85, 125, 173, 229, 293, 365, 445, 533, 629, 733, 845, 965, 1093, 1229, 1373, 1525, 1685, 1853, 2029, 2213, 2405, 2605, 2813, 3029, 3253, 3485, 3725, 3973, 4229, 4493, 4765, 5045, 5333, 5629, 5933, 6245, 6565, 6893, 7229, 7573, 7925, 8285 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the generic form of D in the (nontrivially) solvable Pell equation x^2 - D*y^2 = -4. See A078356, A078357. 1/5 + 1/13 + 1/29 +...= (Pi/8)*tanh Pi [Jolley]. - Gary W. Adamson, Dec 21 2006 Appears in A054413 and A086902 in relation to sequences related to the numerators and denominators of continued fractions convergents to sqrt((2*n+1)^2 + 4), n = 1, 2, 3, ... . - Johannes W. Meijer, Jun 12 2010 (2*n + 1 + sqrt(a(n)))/2 = [2*n+1; 2*n+1, 2*n+1, ...], n>=0, with the regular continued fraction with period length 1. This is the odd case. See A087475 for the general case with the Schroeder reference and comments. For the even case see A002522. REFERENCES L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 4*(n+1)*n+5 = 8*binomial(n+1, 2)+5, hence subsequence of A004770 (5 (mod 8) numbers). G.f.: (5-2*x+5*x^2)/(1-x)^3. a(n) = 8*n + a(n-1) (with a(0)=5). - Vincenzo Librandi, Aug 08 2010 MATHEMATICA Table[4 n (n + 1) + 5, {n, 0, 45}] (* or *) Table[8 Binomial[n + 1, 2] + 5, {n, 0, 45}] (* or *) CoefficientList[Series[(5 - 2 x + 5 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Jan 04 2017 *) PROG (PARI) a(n)=4*n^2+4*n+5 \\ Charles R Greathouse IV, Sep 24 2015 (Python) a= lambda n: 4*n**2+4*n+5 # Indranil Ghosh, Jan 04 2017 CROSSREFS Subsequence of A077426 (D values (not a square) for which Pell x^2 - D*y^2 = -4 is solvable in positive integers). Sequence in context: A220500 A130230 A106931 * A247903 A240130 A005473 Adjacent sequences:  A078367 A078368 A078369 * A078371 A078372 A078373 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 29 2002 EXTENSIONS More terms from Max Alekseyev, Mar 03 2010 Typo in first formula fixed by Zak Seidov, Feb 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:05 EST 2018. Contains 318049 sequences. (Running on oeis4.)