The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144874 Coefficients of the series expansion of q^(-1/4) pi_q. 0
 1, 2, 0, 0, 1, -2, 1, 2, -3, 0, 2, 0, -1, 0, -1, 0, 4, -2, -2, 0, -1, 4, 1, -4, 0, 2, -2, 0, 2, 0, -1, 2, -1, -4, 2, 0, 2, 2, -2, 0, -2, -2, 3, 2, -3, 0, 4, -2, -2, 2, -2, 2, 0, -4, 0, 4, 3, -2, -1, -2, 0, 2, -2, -2, 2, 2, 2, 0, -4, 0, 2, -2, 1, 2, -3, -2, 4, 0, -2, 2, -2, 4, 0, -4, 2, -2, -2, 2, 2, -2, -1, 4, 1, -2, 2, -2, -4, 2, 0, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Peter Bala, Dec 12 2013: (Start) The gamma function Gamma(x) has a q-extension or q-analog called the q-gamma function, denoted Gamma(q,x), defined by means of the product Gamma(q,x) := 1/(1-q)^(x-1)*( product{n >= 1} (1 - q^n)/(1 - q^(n+x-1)) ) when |q| < 1. The gamma and q-gamma functions are related through the limiting process Gamma(x) = lim {q -> 1 from below} Gamma(q,x). It is well known that the constant Pi = Gamma(1/2)^2. This suggests defining a function Pi(q), a q-analog of Pi, by putting Pi(q) = Gamma(q^2,1/2)^2 = (1 - q^2)*( product {n >= 1} (1 - q^(2*n))/(1 - q^(2*n-1)) )^2 = 1 + 2*q + q^4 - 2*q^5 + q^6 + .... This sequence gives the coefficients in the Maclaurin expansion of Pi(q). Several classical formulas involving Pi have generalizations that involve the function Pi(q). See the Formula section below. (End) REFERENCES R. Roy, Sources in the development of mathematics, Cambridge University Press 2011 R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. LINKS R. W. Gosper, Experiments and discoveries in q-trigonometry, Preprint. R. W. Gosper, q-Trigonometry: Some Prefatory Afterthoughts K. Ono, S. Robins, P. T. Wahl,On the representation of integers as sums of triangular numbers, aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94 Eric Weisstein's World of Mathematics, q-Pi Wikipedia, Leibniz formula for Pi Wikipedia, q-analog Wikipedia, q-gamma function Wikipedia, Wallis product FORMULA From Peter Bala, Dec 12 2013: (Start) Pi(q) = q^(1/4)*pi_q. Pi(q) = (1 - q^2)*( sum {n >=0} q^(n*(n+1)/2) )^2. Some q-analogs of classical formulas = = = = = = = = = = = = = = = = = = = Let [n] := 1 + q + q^2 + ... + q^(n-1) denote the q-analog of the natural number n. (a) Wallis' formula Pi/2 = (2/1)*(2/3)*(4/3)*(4/5)*(6/5)*(6/7)* .... q_analog: Pi(q)/[2] = ([2]/[1])*([2]/[3])*([4]/[3])*([4]/[5])*([6]/[5])*([6]/[7)* .... (b) The Euler-Sylvester continued fraction Pi/2 = 1 + 1/(1 + 2/(1 + 6/(1 + 12/(1 + ...)))) (Roy 3.47 and 3.67). q-analog: Pi(q)/[2] = 1 + q/(1 + q*[1]*[2]/(1 + q*[2]*[3]/(1 + q*[3]*[4]/(1 + ...)))). (c) The Madhava-Leibniz series Pi/4 = 1 - 1/3 + 1/5 - 1/7 + .... We have two q-analogs: Pi(q^2)/[4] = 1/[1] - q/[3] + q^2/[5] - q^3/[7] + ..., as well as Pi(q)/[2] = sum {n in Z} (-1)^n*q^(n*(n+1))/[2*n+1]. (d) The result Pi^2/8 = sum {n >= 0} 1/(2*n+1)^2. q-analog: Pi(q^2)^2/[2]^2 = (1 + q)/[1]^2 + q*(1 + q^3)/[3]^2 + q^2*(1 + q^5)/[5]^2 + .... (e) The result Pi^4/96 = sum {n >= 0} 1/(2*n+1)^4. q-analog: q*Pi(q^2)^4/[2]^4 = f(q)/[1]^4 + f(q^3)/[3]^4 + f(q^5)/[5]^4 + ..., where f(q) = q + 4*q^2 + q^3. (End) EXAMPLE G.f. = 1 + 2*x + x^4 - 2*x^5 + x^6 + 2*x^7 - 3*x^8 + 2*x^10 + ... MATHEMATICA max = 100; pi[q_] := (1 - q^2)*q^(1/4)*Product[(1 - q^(2n))^2 / (1 - q^(2n - 1))^2, {n, 1, max}]; CoefficientList[ Series[ q^(-1/4)*pi[q], {q, 0, max}], q] (* Jean-François Alcover, Feb 07 2013 *) CROSSREFS Sequence in context: A245187 A292598 A079113 * A333365 A303065 A325406 Adjacent sequences:  A144871 A144872 A144873 * A144875 A144876 A144877 KEYWORD sign AUTHOR Eric W. Weisstein, Sep 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 05:35 EDT 2020. Contains 334712 sequences. (Running on oeis4.)