login
A144874
Coefficients of the series expansion of q^(-1/4) pi_q.
1
1, 2, 0, 0, 1, -2, 1, 2, -3, 0, 2, 0, -1, 0, -1, 0, 4, -2, -2, 0, -1, 4, 1, -4, 0, 2, -2, 0, 2, 0, -1, 2, -1, -4, 2, 0, 2, 2, -2, 0, -2, -2, 3, 2, -3, 0, 4, -2, -2, 2, -2, 2, 0, -4, 0, 4, 3, -2, -1, -2, 0, 2, -2, -2, 2, 2, 2, 0, -4, 0, 2, -2, 1, 2, -3, -2, 4, 0, -2, 2, -2, 4, 0, -4, 2, -2, -2, 2, 2, -2, -1, 4, 1, -2, 2, -2, -4, 2, 0, 0, 2
OFFSET
0,2
COMMENTS
From Peter Bala, Dec 12 2013: (Start)
The gamma function Gamma(x) has a q-extension or q-analog called the q-gamma function, denoted Gamma(q,x), defined by means of the product Gamma(q,x) := 1/(1-q)^(x-1)*( product{n >= 1} (1 - q^n)/(1 - q^(n+x-1)) ) when |q| < 1.
The gamma and q-gamma functions are related through the limiting process Gamma(x) = lim {q -> 1 from below} Gamma(q,x).
It is well known that the constant Pi = Gamma(1/2)^2. This suggests defining a function Pi(q), a q-analog of Pi, by putting Pi(q) = Gamma(q^2,1/2)^2 = (1 - q^2)*( product {n >= 1} (1 - q^(2*n))/(1 - q^(2*n-1)) )^2 = 1 + 2*q + q^4 - 2*q^5 + q^6 + .... This sequence gives the coefficients in the Maclaurin expansion of Pi(q).
Several classical formulas involving Pi have generalizations that involve the function Pi(q). See the Formula section below. (End)
REFERENCES
R. Roy, Sources in the development of mathematics, Cambridge University Press 2011.
R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.
LINKS
K. Ono, S. Robins and P. T. Wahl,On the representation of integers as sums of triangular numbers, aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94
Eric Weisstein's World of Mathematics, q-Pi
Wikipedia, q-analog
Wikipedia, q-gamma function
Wikipedia, Wallis product
FORMULA
From Peter Bala, Dec 12 2013: (Start)
Pi(q) = q^(1/4)*pi_q.
Pi(q) = (1 - q^2)*( Sum_{n >=0} q^(n*(n+1)/2) )^2.
Some q-analogs of classical formulas
= = = = = = = = = = = = = = = = = = =
Let [n] := 1 + q + q^2 + ... + q^(n-1) denote the q-analog of the natural number n.
(a) Wallis' formula Pi/2 = (2/1)*(2/3)*(4/3)*(4/5)*(6/5)*(6/7)* ....
q_analog: Pi(q)/[2] = ([2]/[1])*([2]/[3])*([4]/[3])*([4]/[5])*([6]/[5])*([6]/[7)* ....
(b) The Euler-Sylvester continued fraction Pi/2 = 1 + 1/(1 + 2/(1 + 6/(1 + 12/(1 + ...)))) (Roy 3.47 and 3.67).
q-analog: Pi(q)/[2] = 1 + q/(1 + q*[1]*[2]/(1 + q*[2]*[3]/(1 + q*[3]*[4]/(1 + ...)))).
(c) The Madhava-Leibniz series Pi/4 = 1 - 1/3 + 1/5 - 1/7 + ....
We have two q-analogs:
Pi(q^2)/[4] = 1/[1] - q/[3] + q^2/[5] - q^3/[7] + ...,
as well as
Pi(q)/[2] = sum {n in Z} (-1)^n*q^(n*(n+1))/[2*n+1].
(d) The result Pi^2/8 = sum {n >= 0} 1/(2*n+1)^2.
q-analog: Pi(q^2)^2/[2]^2 = (1 + q)/[1]^2 + q*(1 + q^3)/[3]^2 + q^2*(1 + q^5)/[5]^2 + ....
(e) The result Pi^4/96 = sum {n >= 0} 1/(2*n+1)^4.
q-analog: q*Pi(q^2)^4/[2]^4 = f(q)/[1]^4 + f(q^3)/[3]^4 + f(q^5)/[5]^4 + ..., where f(q) = q + 4*q^2 + q^3. (End)
a(n) = A008441(n) - A008441(n-2) for n > 1. - Seiichi Manyama, Jan 05 2022
EXAMPLE
G.f. = 1 + 2*x + x^4 - 2*x^5 + x^6 + 2*x^7 - 3*x^8 + 2*x^10 + ...
MATHEMATICA
max = 100; pi[q_] := (1 - q^2)*q^(1/4)*Product[(1 - q^(2n))^2 / (1 - q^(2n - 1))^2, {n, 1, max}]; CoefficientList[ Series[ q^(-1/4)*pi[q], {q, 0, max}], q] (* Jean-François Alcover, Feb 07 2013 *)
CROSSREFS
Cf. A008441.
Sequence in context: A245187 A292598 A079113 * A333365 A303065 A325406
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Sep 23 2008
STATUS
approved