login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144874 Coefficients of the series expansion of q^(-1/4) pi_q. 1

%I #35 Jan 06 2022 12:34:06

%S 1,2,0,0,1,-2,1,2,-3,0,2,0,-1,0,-1,0,4,-2,-2,0,-1,4,1,-4,0,2,-2,0,2,0,

%T -1,2,-1,-4,2,0,2,2,-2,0,-2,-2,3,2,-3,0,4,-2,-2,2,-2,2,0,-4,0,4,3,-2,

%U -1,-2,0,2,-2,-2,2,2,2,0,-4,0,2,-2,1,2,-3,-2,4,0,-2,2,-2,4,0,-4,2,-2,-2,2,2,-2,-1,4,1,-2,2,-2,-4,2,0,0,2

%N Coefficients of the series expansion of q^(-1/4) pi_q.

%C From _Peter Bala_, Dec 12 2013: (Start)

%C The gamma function Gamma(x) has a q-extension or q-analog called the q-gamma function, denoted Gamma(q,x), defined by means of the product Gamma(q,x) := 1/(1-q)^(x-1)*( product{n >= 1} (1 - q^n)/(1 - q^(n+x-1)) ) when |q| < 1.

%C The gamma and q-gamma functions are related through the limiting process Gamma(x) = lim {q -> 1 from below} Gamma(q,x).

%C It is well known that the constant Pi = Gamma(1/2)^2. This suggests defining a function Pi(q), a q-analog of Pi, by putting Pi(q) = Gamma(q^2,1/2)^2 = (1 - q^2)*( product {n >= 1} (1 - q^(2*n))/(1 - q^(2*n-1)) )^2 = 1 + 2*q + q^4 - 2*q^5 + q^6 + .... This sequence gives the coefficients in the Maclaurin expansion of Pi(q).

%C Several classical formulas involving Pi have generalizations that involve the function Pi(q). See the Formula section below. (End)

%D R. Roy, Sources in the development of mathematics, Cambridge University Press 2011.

%D R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.

%H Seiichi Manyama, <a href="/A144874/b144874.txt">Table of n, a(n) for n = 0..10000</a>

%H R. W. Gosper, <a href="/A274621/a274621.pdf">Experiments and discoveries in q-trigonometry</a>, Preprint.

%H R. W. Gosper, <a href="/A274621/a274621_1.pdf">q-Trigonometry: Some Prefatory Afterthoughts</a>

%H K. Ono, S. Robins and P. T. Wahl,<a href="https://web.archive.org/web/20190712123047/http://www.mathcs.emory.edu/~ono/publications-cv/pdfs/006.pdf">On the representation of integers as sums of triangular numbers</a>, aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-Pi.html">q-Pi</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Leibniz_formula_for_pi">Leibniz formula for Pi</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Q-analog">q-analog</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Q-gamma_function">q-gamma function</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Wallis_product">Wallis product</a>

%F From _Peter Bala_, Dec 12 2013: (Start)

%F Pi(q) = q^(1/4)*pi_q.

%F Pi(q) = (1 - q^2)*( Sum_{n >=0} q^(n*(n+1)/2) )^2.

%F Some q-analogs of classical formulas

%F = = = = = = = = = = = = = = = = = = =

%F Let [n] := 1 + q + q^2 + ... + q^(n-1) denote the q-analog of the natural number n.

%F (a) Wallis' formula Pi/2 = (2/1)*(2/3)*(4/3)*(4/5)*(6/5)*(6/7)* ....

%F q_analog: Pi(q)/[2] = ([2]/[1])*([2]/[3])*([4]/[3])*([4]/[5])*([6]/[5])*([6]/[7)* ....

%F (b) The Euler-Sylvester continued fraction Pi/2 = 1 + 1/(1 + 2/(1 + 6/(1 + 12/(1 + ...)))) (Roy 3.47 and 3.67).

%F q-analog: Pi(q)/[2] = 1 + q/(1 + q*[1]*[2]/(1 + q*[2]*[3]/(1 + q*[3]*[4]/(1 + ...)))).

%F (c) The Madhava-Leibniz series Pi/4 = 1 - 1/3 + 1/5 - 1/7 + ....

%F We have two q-analogs:

%F Pi(q^2)/[4] = 1/[1] - q/[3] + q^2/[5] - q^3/[7] + ...,

%F as well as

%F Pi(q)/[2] = sum {n in Z} (-1)^n*q^(n*(n+1))/[2*n+1].

%F (d) The result Pi^2/8 = sum {n >= 0} 1/(2*n+1)^2.

%F q-analog: Pi(q^2)^2/[2]^2 = (1 + q)/[1]^2 + q*(1 + q^3)/[3]^2 + q^2*(1 + q^5)/[5]^2 + ....

%F (e) The result Pi^4/96 = sum {n >= 0} 1/(2*n+1)^4.

%F q-analog: q*Pi(q^2)^4/[2]^4 = f(q)/[1]^4 + f(q^3)/[3]^4 + f(q^5)/[5]^4 + ..., where f(q) = q + 4*q^2 + q^3. (End)

%F a(n) = A008441(n) - A008441(n-2) for n > 1. - _Seiichi Manyama_, Jan 05 2022

%e G.f. = 1 + 2*x + x^4 - 2*x^5 + x^6 + 2*x^7 - 3*x^8 + 2*x^10 + ...

%t max = 100; pi[q_] := (1 - q^2)*q^(1/4)*Product[(1 - q^(2n))^2 / (1 - q^(2n - 1))^2, {n, 1, max}]; CoefficientList[ Series[ q^(-1/4)*pi[q], {q, 0, max}], q] (* _Jean-François Alcover_, Feb 07 2013 *)

%Y Cf. A008441.

%K sign

%O 0,2

%A _Eric W. Weisstein_, Sep 23 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:09 EDT 2024. Contains 370951 sequences. (Running on oeis4.)